--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: Qwen/Qwen2-7B model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2-7B trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/out sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: false gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 special_tokens: ```

# outputs/out This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co./Qwen/Qwen2-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.7953 | 0.0031 | 1 | 10.8104 | | 5.4963 | 0.2513 | 80 | 5.4101 | | 5.0323 | 0.5026 | 160 | 5.0758 | | 4.9877 | 0.7538 | 240 | 4.8417 | | 4.7408 | 1.0051 | 320 | 4.6180 | | 4.5097 | 1.2442 | 400 | 4.5066 | | 4.3959 | 1.4955 | 480 | 4.4513 | | 4.2488 | 1.7468 | 560 | 4.4107 | | 4.3507 | 1.9980 | 640 | 4.3784 | | 4.2352 | 2.2352 | 720 | 4.3684 | | 4.2141 | 2.4865 | 800 | 4.3505 | | 4.2739 | 2.7377 | 880 | 4.3375 | | 4.4037 | 2.9890 | 960 | 4.3310 | | 4.195 | 3.2269 | 1040 | 4.3287 | | 4.1996 | 3.4782 | 1120 | 4.3268 | | 4.1353 | 3.7295 | 1200 | 4.3265 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1