--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google-bert/bert-base-uncased metrics: - accuracy - f1 model-index: - name: loha_fine_tuned_copa results: [] --- # loha_fine_tuned_copa This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6922 - Accuracy: 0.5 - F1: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.7089 | 1.0 | 50 | 0.6923 | 0.5 | 0.5 | | 0.7026 | 2.0 | 100 | 0.6923 | 0.5 | 0.5 | | 0.6995 | 3.0 | 150 | 0.6923 | 0.5 | 0.5 | | 0.7009 | 4.0 | 200 | 0.6923 | 0.5 | 0.5 | | 0.6997 | 5.0 | 250 | 0.6923 | 0.5 | 0.5 | | 0.7028 | 6.0 | 300 | 0.6922 | 0.5 | 0.5 | | 0.6951 | 7.0 | 350 | 0.6922 | 0.5 | 0.5 | | 0.6949 | 8.0 | 400 | 0.6922 | 0.5 | 0.5 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1