--- license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: lenate_model_12_albert-base-v2 results: [] --- # lenate_model_12_albert-base-v2 This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co./albert/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5494 - Accuracy: 0.7622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 355 | 0.6467 | 0.7212 | | 0.7746 | 2.0 | 710 | 0.5847 | 0.7241 | | 0.5448 | 3.0 | 1065 | 0.5494 | 0.7622 | | 0.5448 | 4.0 | 1420 | 0.6416 | 0.7368 | | 0.3705 | 5.0 | 1775 | 0.6439 | 0.7735 | | 0.2112 | 6.0 | 2130 | 0.8791 | 0.7643 | | 0.2112 | 7.0 | 2485 | 1.1350 | 0.7657 | | 0.1012 | 8.0 | 2840 | 1.3247 | 0.7721 | | 0.0294 | 9.0 | 3195 | 1.4469 | 0.7699 | | 0.0112 | 10.0 | 3550 | 1.4783 | 0.7699 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2