File size: 2,002 Bytes
65ed4b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: lenate_model_11_distilbert_trained
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lenate_model_11_distilbert_trained

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5964
- Accuracy: 0.7332

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 355  | 0.6187          | 0.7163   |
| 0.668         | 2.0   | 710  | 0.5964          | 0.7332   |
| 0.4256        | 3.0   | 1065 | 0.6048          | 0.7615   |
| 0.4256        | 4.0   | 1420 | 0.6930          | 0.7685   |
| 0.2576        | 5.0   | 1775 | 0.8426          | 0.7502   |
| 0.1593        | 6.0   | 2130 | 1.0264          | 0.7565   |
| 0.1593        | 7.0   | 2485 | 1.1487          | 0.7586   |
| 0.0968        | 8.0   | 2840 | 1.3436          | 0.7530   |
| 0.0456        | 9.0   | 3195 | 1.3743          | 0.7594   |
| 0.0342        | 10.0  | 3550 | 1.3954          | 0.7594   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2