File size: 7,506 Bytes
4b1919d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
main: build = 3010 (95f84d5c)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1716843987
llama_model_loader: loaded meta data with 26 key-value pairs and 563 tensors from internlm2-math-plus-mixtral8x22b-IMat-GGUF/internlm2-math-plus-mixtral8x22b.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = internlm2-math-plus-mixtral8x22b
llama_model_loader: - kv   2:                          llama.block_count u32              = 56
llama_model_loader: - kv   3:                       llama.context_length u32              = 65536
llama_model_loader: - kv   4:                     llama.embedding_length u32              = 6144
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 16384
llama_model_loader: - kv   6:                 llama.attention.head_count u32              = 48
llama_model_loader: - kv   7:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   8:                       llama.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                         llama.expert_count u32              = 8
llama_model_loader: - kv  11:                    llama.expert_used_count u32              = 2
llama_model_loader: - kv  12:                          general.file_type u32              = 1
llama_model_loader: - kv  13:                           llama.vocab_size u32              = 32064
llama_model_loader: - kv  14:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  15:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  16:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  17:                      tokenizer.ggml.tokens arr[str,32064]   = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv  18:                      tokenizer.ggml.scores arr[f32,32064]   = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv  19:                  tokenizer.ggml.token_type arr[i32,32064]   = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv  20:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  21:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  22:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  24:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  25:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  169 tensors
llama_model_loader: - type  f16:  394 tensors
llm_load_vocab: special tokens definition check successful ( 323/32064 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32064
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 65536
llm_load_print_meta: n_embd           = 6144
llm_load_print_meta: n_head           = 48
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 56
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 6
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 16384
llm_load_print_meta: n_expert         = 8
llm_load_print_meta: n_expert_used    = 2
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 65536
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 8x22B
llm_load_print_meta: model ftype      = F16
llm_load_print_meta: model params     = 140.62 B
llm_load_print_meta: model size       = 261.93 GiB (16.00 BPW) 
llm_load_print_meta: general.name     = internlm2-math-plus-mixtral8x22b
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 13 '<0x0A>'
llm_load_print_meta: EOT token        = 32004 '<|im_end|>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.56 MiB
ggml_backend_cuda_buffer_type_alloc_buffer: allocating 9552.47 MiB on device 0: cudaMalloc failed: out of memory
llama_model_load: error loading model: unable to allocate backend buffer
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: error: failed to load model 'internlm2-math-plus-mixtral8x22b-IMat-GGUF/internlm2-math-plus-mixtral8x22b.gguf'
main : failed to init
[9]2.9094,
save_imatrix: stored collected data after 10 chunks in internlm2-math-plus-mixtral8x22b-IMat-GGUF/imatrix.dat