File size: 7,468 Bytes
a9502fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
llama_model_loader: loaded meta data with 24 key-value pairs and 283 tensors from glm-4-9b-chat-IMat-GGUF/glm-4-9b-chat.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = chatglm
llama_model_loader: - kv   1:                               general.name str              = glm-4-9b-chat
llama_model_loader: - kv   2:                     chatglm.context_length u32              = 131072
llama_model_loader: - kv   3:                   chatglm.embedding_length u32              = 4096
llama_model_loader: - kv   4:                chatglm.feed_forward_length u32              = 13696
llama_model_loader: - kv   5:                        chatglm.block_count u32              = 40
llama_model_loader: - kv   6:               chatglm.attention.head_count u32              = 32
llama_model_loader: - kv   7:            chatglm.attention.head_count_kv u32              = 2
llama_model_loader: - kv   8:   chatglm.attention.layer_norm_rms_epsilon f32              = 0.000000
llama_model_loader: - kv   9:                          general.file_type u32              = 7
llama_model_loader: - kv  10:               chatglm.rope.dimension_count u32              = 64
llama_model_loader: - kv  11:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  13:                         tokenizer.ggml.pre str              = chatglm-bpe
llama_model_loader: - kv  14:                      tokenizer.ggml.tokens arr[str,151552]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr[i32,151552]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  16:                      tokenizer.ggml.merges arr[str,151073]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  17:            tokenizer.ggml.padding_token_id u32              = 151329
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 151329
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 151329
llama_model_loader: - kv  20:                tokenizer.ggml.eot_token_id u32              = 151336
llama_model_loader: - kv  21:            tokenizer.ggml.unknown_token_id u32              = 151329
llama_model_loader: - kv  22:                    tokenizer.chat_template str              = ChatGLM4
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  121 tensors
llama_model_loader: - type q8_0:  162 tensors
llm_load_vocab: special tokens cache size = 223
llm_load_vocab: token to piece cache size = 0.9732 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = chatglm
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 151552
llm_load_print_meta: n_merges         = 151073
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 2
llm_load_print_meta: n_layer          = 40
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 16
llm_load_print_meta: n_embd_k_gqa     = 256
llm_load_print_meta: n_embd_v_gqa     = 256
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.6e-07
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 13696
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 9.40 B
llm_load_print_meta: model size       = 9.30 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = glm-4-9b-chat
llm_load_print_meta: BOS token        = 151329 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151329 '<|endoftext|>'
llm_load_print_meta: UNK token        = 151329 '<|endoftext|>'
llm_load_print_meta: PAD token        = 151329 '<|endoftext|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOT token        = 151336 '<|user|>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.31 MiB
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors:        CPU buffer size =   629.00 MiB
llm_load_tensors:      CUDA0 buffer size =  8897.23 MiB
.................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =    20.00 MiB
llama_new_context_with_model: KV self size  =   20.00 MiB, K (f16):   10.00 MiB, V (f16):   10.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   304.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     9.01 MiB
llama_new_context_with_model: graph nodes  = 1606
llama_new_context_with_model: graph splits = 2

system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 122.54 ms
compute_imatrix: computing over 125 chunks with batch_size 512
compute_imatrix: 0.65 seconds per pass - ETA 1.35 minutes
[1]7.9954,[2]6.0663,[3]5.9242,[4]7.2853,[5]7.2095,[6]6.0079,[7]6.4837,[8]6.8565,[9]7.0213,
save_imatrix: stored collected data after 10 chunks in glm-4-9b-chat-IMat-GGUF/imatrix.dat
[10]6.1378,[11]6.7411,[12]7.3944,[13]7.8688,[14]8.1976,[15]8.6583,[16]9.1342,[17]9.4154,[18]9.1001,[19]8.6114,
save_imatrix: stored collected data after 20 chunks in glm-4-9b-chat-IMat-GGUF/imatrix.dat
[20]8.5978,nan detected in blk.18.attn_output.weight