File size: 7,468 Bytes
a9502fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
llama_model_loader: loaded meta data with 24 key-value pairs and 283 tensors from glm-4-9b-chat-IMat-GGUF/glm-4-9b-chat.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = chatglm
llama_model_loader: - kv 1: general.name str = glm-4-9b-chat
llama_model_loader: - kv 2: chatglm.context_length u32 = 131072
llama_model_loader: - kv 3: chatglm.embedding_length u32 = 4096
llama_model_loader: - kv 4: chatglm.feed_forward_length u32 = 13696
llama_model_loader: - kv 5: chatglm.block_count u32 = 40
llama_model_loader: - kv 6: chatglm.attention.head_count u32 = 32
llama_model_loader: - kv 7: chatglm.attention.head_count_kv u32 = 2
llama_model_loader: - kv 8: chatglm.attention.layer_norm_rms_epsilon f32 = 0.000000
llama_model_loader: - kv 9: general.file_type u32 = 7
llama_model_loader: - kv 10: chatglm.rope.dimension_count u32 = 64
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.pre str = chatglm-bpe
llama_model_loader: - kv 14: tokenizer.ggml.tokens arr[str,151552] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,151552] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,151073] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32 = 151329
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151329
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 151329
llama_model_loader: - kv 20: tokenizer.ggml.eot_token_id u32 = 151336
llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 151329
llama_model_loader: - kv 22: tokenizer.chat_template str = ChatGLM4
llama_model_loader: - kv 23: general.quantization_version u32 = 2
llama_model_loader: - type f32: 121 tensors
llama_model_loader: - type q8_0: 162 tensors
llm_load_vocab: special tokens cache size = 223
llm_load_vocab: token to piece cache size = 0.9732 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = chatglm
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 151552
llm_load_print_meta: n_merges = 151073
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 2
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 16
llm_load_print_meta: n_embd_k_gqa = 256
llm_load_print_meta: n_embd_v_gqa = 256
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.6e-07
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 13696
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 8B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 9.40 B
llm_load_print_meta: model size = 9.30 GiB (8.50 BPW)
llm_load_print_meta: general.name = glm-4-9b-chat
llm_load_print_meta: BOS token = 151329 '<|endoftext|>'
llm_load_print_meta: EOS token = 151329 '<|endoftext|>'
llm_load_print_meta: UNK token = 151329 '<|endoftext|>'
llm_load_print_meta: PAD token = 151329 '<|endoftext|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 151336 '<|user|>'
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size = 0.31 MiB
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors: CPU buffer size = 629.00 MiB
llm_load_tensors: CUDA0 buffer size = 8897.23 MiB
.................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 20.00 MiB
llama_new_context_with_model: KV self size = 20.00 MiB, K (f16): 10.00 MiB, V (f16): 10.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.58 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 304.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
llama_new_context_with_model: graph nodes = 1606
llama_new_context_with_model: graph splits = 2
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 122.54 ms
compute_imatrix: computing over 125 chunks with batch_size 512
compute_imatrix: 0.65 seconds per pass - ETA 1.35 minutes
[1]7.9954,[2]6.0663,[3]5.9242,[4]7.2853,[5]7.2095,[6]6.0079,[7]6.4837,[8]6.8565,[9]7.0213,
save_imatrix: stored collected data after 10 chunks in glm-4-9b-chat-IMat-GGUF/imatrix.dat
[10]6.1378,[11]6.7411,[12]7.3944,[13]7.8688,[14]8.1976,[15]8.6583,[16]9.1342,[17]9.4154,[18]9.1001,[19]8.6114,
save_imatrix: stored collected data after 20 chunks in glm-4-9b-chat-IMat-GGUF/imatrix.dat
[20]8.5978,nan detected in blk.18.attn_output.weight
|