legraphista
commited on
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +40 -37
imatrix.log
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
llama_model_loader: loaded meta data with
|
2 |
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
llama_model_loader: - kv 0: general.architecture str = gemma2
|
4 |
llama_model_loader: - kv 1: general.name str = Gemma-2-9B-It-SPPO-Iter3
|
@@ -14,35 +14,38 @@ llama_model_loader: - kv 10: gemma2.attention.value_length u32
|
|
14 |
llama_model_loader: - kv 11: general.file_type u32 = 7
|
15 |
llama_model_loader: - kv 12: gemma2.attn_logit_softcapping f32 = 50.000000
|
16 |
llama_model_loader: - kv 13: gemma2.final_logit_softcapping f32 = 30.000000
|
17 |
-
llama_model_loader: - kv 14:
|
18 |
-
llama_model_loader: - kv 15:
|
19 |
-
llama_model_loader: - kv 16:
|
20 |
-
llama_model_loader: - kv 17: tokenizer.ggml.
|
21 |
-
llama_model_loader: - kv 18:
|
22 |
-
llama_model_loader: - kv 19:
|
23 |
-
llama_model_loader: - kv 20: tokenizer.ggml.
|
24 |
-
llama_model_loader: - kv 21:
|
25 |
-
llama_model_loader: - kv 22: tokenizer.ggml.
|
26 |
-
llama_model_loader: - kv 23:
|
27 |
-
llama_model_loader: - kv 24: tokenizer.ggml.
|
28 |
-
llama_model_loader: - kv 25:
|
29 |
-
llama_model_loader: - kv 26:
|
30 |
-
llama_model_loader: - kv 27:
|
|
|
31 |
llama_model_loader: - type f32: 169 tensors
|
32 |
llama_model_loader: - type q8_0: 295 tensors
|
33 |
-
llm_load_vocab: special tokens cache size =
|
34 |
llm_load_vocab: token to piece cache size = 1.6014 MB
|
35 |
llm_load_print_meta: format = GGUF V3 (latest)
|
36 |
llm_load_print_meta: arch = gemma2
|
37 |
llm_load_print_meta: vocab type = SPM
|
38 |
llm_load_print_meta: n_vocab = 256000
|
39 |
llm_load_print_meta: n_merges = 0
|
|
|
40 |
llm_load_print_meta: n_ctx_train = 8192
|
41 |
llm_load_print_meta: n_embd = 3584
|
|
|
42 |
llm_load_print_meta: n_head = 16
|
43 |
llm_load_print_meta: n_head_kv = 8
|
44 |
-
llm_load_print_meta: n_layer = 42
|
45 |
llm_load_print_meta: n_rot = 224
|
|
|
46 |
llm_load_print_meta: n_embd_head_k = 256
|
47 |
llm_load_print_meta: n_embd_head_v = 256
|
48 |
llm_load_print_meta: n_gqa = 2
|
@@ -101,46 +104,46 @@ llama_kv_cache_init: CUDA0 KV buffer size = 168.00 MiB
|
|
101 |
llama_new_context_with_model: KV self size = 168.00 MiB, K (f16): 84.00 MiB, V (f16): 84.00 MiB
|
102 |
llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
|
103 |
llama_new_context_with_model: CUDA0 compute buffer size = 507.00 MiB
|
104 |
-
llama_new_context_with_model: CUDA_Host compute buffer size =
|
105 |
llama_new_context_with_model: graph nodes = 1690
|
106 |
llama_new_context_with_model: graph splits = 2
|
107 |
|
108 |
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
109 |
compute_imatrix: tokenizing the input ..
|
110 |
-
compute_imatrix: tokenization took
|
111 |
compute_imatrix: computing over 128 chunks with batch_size 512
|
112 |
-
compute_imatrix: 0.
|
113 |
-
[1]
|
114 |
save_imatrix: stored collected data after 10 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
115 |
-
[10]
|
116 |
save_imatrix: stored collected data after 20 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
117 |
-
[20]
|
118 |
save_imatrix: stored collected data after 30 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
119 |
-
[30]
|
120 |
save_imatrix: stored collected data after 40 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
121 |
-
[40]
|
122 |
save_imatrix: stored collected data after 50 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
123 |
-
[50]
|
124 |
save_imatrix: stored collected data after 60 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
125 |
-
[60]
|
126 |
save_imatrix: stored collected data after 70 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
127 |
-
[70]
|
128 |
save_imatrix: stored collected data after 80 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
129 |
-
[80]
|
130 |
save_imatrix: stored collected data after 90 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
131 |
-
[90]
|
132 |
save_imatrix: stored collected data after 100 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
133 |
-
[100]
|
134 |
save_imatrix: stored collected data after 110 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
135 |
-
[110]
|
136 |
save_imatrix: stored collected data after 120 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
137 |
-
[120]
|
138 |
save_imatrix: stored collected data after 128 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
139 |
|
140 |
-
llama_print_timings: load time =
|
141 |
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
142 |
-
llama_print_timings: prompt eval time =
|
143 |
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
144 |
-
llama_print_timings: total time =
|
145 |
|
146 |
-
Final estimate: PPL =
|
|
|
1 |
+
llama_model_loader: loaded meta data with 29 key-value pairs and 464 tensors from Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/Gemma-2-9B-It-SPPO-Iter3.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
|
2 |
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
llama_model_loader: - kv 0: general.architecture str = gemma2
|
4 |
llama_model_loader: - kv 1: general.name str = Gemma-2-9B-It-SPPO-Iter3
|
|
|
14 |
llama_model_loader: - kv 11: general.file_type u32 = 7
|
15 |
llama_model_loader: - kv 12: gemma2.attn_logit_softcapping f32 = 50.000000
|
16 |
llama_model_loader: - kv 13: gemma2.final_logit_softcapping f32 = 30.000000
|
17 |
+
llama_model_loader: - kv 14: gemma2.attention.sliding_window u32 = 4096
|
18 |
+
llama_model_loader: - kv 15: tokenizer.ggml.model str = llama
|
19 |
+
llama_model_loader: - kv 16: tokenizer.ggml.pre str = default
|
20 |
+
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,256000] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
|
21 |
+
llama_model_loader: - kv 18: tokenizer.ggml.scores arr[f32,256000] = [0.000000, 0.000000, 0.000000, 0.0000...
|
22 |
+
llama_model_loader: - kv 19: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
|
23 |
+
llama_model_loader: - kv 20: tokenizer.ggml.bos_token_id u32 = 2
|
24 |
+
llama_model_loader: - kv 21: tokenizer.ggml.eos_token_id u32 = 1
|
25 |
+
llama_model_loader: - kv 22: tokenizer.ggml.unknown_token_id u32 = 3
|
26 |
+
llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 0
|
27 |
+
llama_model_loader: - kv 24: tokenizer.ggml.add_bos_token bool = true
|
28 |
+
llama_model_loader: - kv 25: tokenizer.ggml.add_eos_token bool = false
|
29 |
+
llama_model_loader: - kv 26: tokenizer.chat_template str = {{ bos_token }}{% if messages[0]['rol...
|
30 |
+
llama_model_loader: - kv 27: tokenizer.ggml.add_space_prefix bool = false
|
31 |
+
llama_model_loader: - kv 28: general.quantization_version u32 = 2
|
32 |
llama_model_loader: - type f32: 169 tensors
|
33 |
llama_model_loader: - type q8_0: 295 tensors
|
34 |
+
llm_load_vocab: special tokens cache size = 364
|
35 |
llm_load_vocab: token to piece cache size = 1.6014 MB
|
36 |
llm_load_print_meta: format = GGUF V3 (latest)
|
37 |
llm_load_print_meta: arch = gemma2
|
38 |
llm_load_print_meta: vocab type = SPM
|
39 |
llm_load_print_meta: n_vocab = 256000
|
40 |
llm_load_print_meta: n_merges = 0
|
41 |
+
llm_load_print_meta: vocab_only = 0
|
42 |
llm_load_print_meta: n_ctx_train = 8192
|
43 |
llm_load_print_meta: n_embd = 3584
|
44 |
+
llm_load_print_meta: n_layer = 42
|
45 |
llm_load_print_meta: n_head = 16
|
46 |
llm_load_print_meta: n_head_kv = 8
|
|
|
47 |
llm_load_print_meta: n_rot = 224
|
48 |
+
llm_load_print_meta: n_swa = 4096
|
49 |
llm_load_print_meta: n_embd_head_k = 256
|
50 |
llm_load_print_meta: n_embd_head_v = 256
|
51 |
llm_load_print_meta: n_gqa = 2
|
|
|
104 |
llama_new_context_with_model: KV self size = 168.00 MiB, K (f16): 84.00 MiB, V (f16): 84.00 MiB
|
105 |
llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
|
106 |
llama_new_context_with_model: CUDA0 compute buffer size = 507.00 MiB
|
107 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
|
108 |
llama_new_context_with_model: graph nodes = 1690
|
109 |
llama_new_context_with_model: graph splits = 2
|
110 |
|
111 |
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
112 |
compute_imatrix: tokenizing the input ..
|
113 |
+
compute_imatrix: tokenization took 119.102 ms
|
114 |
compute_imatrix: computing over 128 chunks with batch_size 512
|
115 |
+
compute_imatrix: 0.85 seconds per pass - ETA 1.82 minutes
|
116 |
+
[1]8.2870,[2]5.5692,[3]4.8574,[4]6.1032,[5]6.2583,[6]5.2453,[7]5.7902,[8]6.1617,[9]6.4089,
|
117 |
save_imatrix: stored collected data after 10 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
118 |
+
[10]5.6400,[11]5.7908,[12]6.3911,[13]6.9578,[14]7.1997,[15]7.8125,[16]8.1619,[17]8.3215,[18]8.6900,[19]8.3100,
|
119 |
save_imatrix: stored collected data after 20 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
120 |
+
[20]8.5375,[21]8.6913,[22]8.6501,[23]8.8311,[24]8.9421,[25]9.1331,[26]8.8236,[27]9.0735,[28]9.2551,[29]9.1570,
|
121 |
save_imatrix: stored collected data after 30 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
122 |
+
[30]9.0664,[31]8.5109,[32]8.2338,[33]8.1731,[34]8.0490,[35]8.0060,[36]8.0236,[37]8.0200,[38]8.1009,[39]8.2803,
|
123 |
save_imatrix: stored collected data after 40 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
124 |
+
[40]8.4557,[41]8.6042,[42]8.8991,[43]9.2142,[44]9.4949,[45]9.6524,[46]9.4993,[47]9.5265,[48]9.7377,[49]9.8946,
|
125 |
save_imatrix: stored collected data after 50 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
126 |
+
[50]9.6778,[51]9.7231,[52]9.7711,[53]9.9173,[54]10.1400,[55]10.2482,[56]10.3176,[57]10.3220,[58]10.3506,[59]10.1951,
|
127 |
save_imatrix: stored collected data after 60 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
128 |
+
[60]10.0656,[61]9.9265,[62]9.8784,[63]9.9241,[64]9.9184,[65]9.8962,[66]9.9283,[67]9.8701,[68]9.7891,[69]9.8077,
|
129 |
save_imatrix: stored collected data after 70 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
130 |
+
[70]9.7677,[71]9.7514,[72]9.7605,[73]9.7345,[74]9.6684,[75]9.6283,[76]9.6233,[77]9.6320,[78]9.6199,[79]9.5661,
|
131 |
save_imatrix: stored collected data after 80 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
132 |
+
[80]9.6315,[81]9.6843,[82]9.6604,[83]9.6603,[84]9.7184,[85]9.5761,[86]9.5323,[87]9.4649,[88]9.4783,[89]9.5114,
|
133 |
save_imatrix: stored collected data after 90 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
134 |
+
[90]9.5357,[91]9.4612,[92]9.3816,[93]9.2879,[94]9.1958,[95]9.1295,[96]9.0453,[97]8.9720,[98]8.9035,[99]8.9543,
|
135 |
save_imatrix: stored collected data after 100 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
136 |
+
[100]8.9876,[101]9.0807,[102]9.1655,[103]9.2443,[104]9.4136,[105]9.5366,[106]9.5596,[107]9.5914,[108]9.6093,[109]9.5883,
|
137 |
save_imatrix: stored collected data after 110 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
138 |
+
[110]9.5676,[111]9.4936,[112]9.4150,[113]9.4655,[114]9.4851,[115]9.4909,[116]9.4830,[117]9.5297,[118]9.5509,[119]9.5557,
|
139 |
save_imatrix: stored collected data after 120 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
140 |
+
[120]9.5669,[121]9.6127,[122]9.5730,[123]9.6293,[124]9.6857,[125]9.7251,[126]9.7980,[127]9.8556,[128]9.9097,
|
141 |
save_imatrix: stored collected data after 128 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
|
142 |
|
143 |
+
llama_print_timings: load time = 14925.71 ms
|
144 |
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
145 |
+
llama_print_timings: prompt eval time = 96055.84 ms / 65536 tokens ( 1.47 ms per token, 682.27 tokens per second)
|
146 |
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
147 |
+
llama_print_timings: total time = 111564.87 ms / 65537 tokens
|
148 |
|
149 |
+
Final estimate: PPL = 9.9097 +/- 0.16369
|