legraphista commited on
Commit
04eec4c
·
verified ·
1 Parent(s): 16b2ec1

Upload imatrix.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. imatrix.log +40 -37
imatrix.log CHANGED
@@ -1,4 +1,4 @@
1
- llama_model_loader: loaded meta data with 28 key-value pairs and 464 tensors from Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/Gemma-2-9B-It-SPPO-Iter3.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
2
  llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
3
  llama_model_loader: - kv 0: general.architecture str = gemma2
4
  llama_model_loader: - kv 1: general.name str = Gemma-2-9B-It-SPPO-Iter3
@@ -14,35 +14,38 @@ llama_model_loader: - kv 10: gemma2.attention.value_length u32
14
  llama_model_loader: - kv 11: general.file_type u32 = 7
15
  llama_model_loader: - kv 12: gemma2.attn_logit_softcapping f32 = 50.000000
16
  llama_model_loader: - kv 13: gemma2.final_logit_softcapping f32 = 30.000000
17
- llama_model_loader: - kv 14: tokenizer.ggml.model str = llama
18
- llama_model_loader: - kv 15: tokenizer.ggml.pre str = default
19
- llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,256000] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
20
- llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,256000] = [-1000.000000, -1000.000000, -1000.00...
21
- llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, ...
22
- llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 2
23
- llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 1
24
- llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 3
25
- llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 0
26
- llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = true
27
- llama_model_loader: - kv 24: tokenizer.ggml.add_eos_token bool = false
28
- llama_model_loader: - kv 25: tokenizer.chat_template str = {{ bos_token }}{% if messages[0]['rol...
29
- llama_model_loader: - kv 26: tokenizer.ggml.add_space_prefix bool = false
30
- llama_model_loader: - kv 27: general.quantization_version u32 = 2
 
31
  llama_model_loader: - type f32: 169 tensors
32
  llama_model_loader: - type q8_0: 295 tensors
33
- llm_load_vocab: special tokens cache size = 261
34
  llm_load_vocab: token to piece cache size = 1.6014 MB
35
  llm_load_print_meta: format = GGUF V3 (latest)
36
  llm_load_print_meta: arch = gemma2
37
  llm_load_print_meta: vocab type = SPM
38
  llm_load_print_meta: n_vocab = 256000
39
  llm_load_print_meta: n_merges = 0
 
40
  llm_load_print_meta: n_ctx_train = 8192
41
  llm_load_print_meta: n_embd = 3584
 
42
  llm_load_print_meta: n_head = 16
43
  llm_load_print_meta: n_head_kv = 8
44
- llm_load_print_meta: n_layer = 42
45
  llm_load_print_meta: n_rot = 224
 
46
  llm_load_print_meta: n_embd_head_k = 256
47
  llm_load_print_meta: n_embd_head_v = 256
48
  llm_load_print_meta: n_gqa = 2
@@ -101,46 +104,46 @@ llama_kv_cache_init: CUDA0 KV buffer size = 168.00 MiB
101
  llama_new_context_with_model: KV self size = 168.00 MiB, K (f16): 84.00 MiB, V (f16): 84.00 MiB
102
  llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
103
  llama_new_context_with_model: CUDA0 compute buffer size = 507.00 MiB
104
- llama_new_context_with_model: CUDA_Host compute buffer size = 8.01 MiB
105
  llama_new_context_with_model: graph nodes = 1690
106
  llama_new_context_with_model: graph splits = 2
107
 
108
  system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
109
  compute_imatrix: tokenizing the input ..
110
- compute_imatrix: tokenization took 93.278 ms
111
  compute_imatrix: computing over 128 chunks with batch_size 512
112
- compute_imatrix: 0.84 seconds per pass - ETA 1.78 minutes
113
- [1]16.6552,[2]8.0903,[3]6.9962,[4]8.3971,[5]9.2464,[6]9.7300,[7]10.7022,[8]11.6187,[9]11.9992,
114
  save_imatrix: stored collected data after 10 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
115
- [10]10.4973,[11]10.2809,[12]11.3377,[13]11.9631,[14]12.0849,[15]12.9207,[16]13.0206,[17]13.0855,[18]13.5418,[19]13.4242,
116
  save_imatrix: stored collected data after 20 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
117
- [20]13.7130,[21]14.8192,[22]14.8997,[23]14.7292,[24]14.9818,[25]14.8718,[26]14.5962,[27]14.8364,[28]15.0628,[29]15.0534,
118
  save_imatrix: stored collected data after 30 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
119
- [30]15.2443,[31]14.0970,[32]13.4552,[33]13.0165,[34]12.6321,[35]12.3731,[36]12.5212,[37]12.8425,[38]13.0140,[39]13.1960,
120
  save_imatrix: stored collected data after 40 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
121
- [40]13.3016,[41]13.3337,[42]13.9154,[43]14.2830,[44]14.6994,[45]14.9396,[46]14.6625,[47]14.4206,[48]14.6417,[49]14.8669,
122
  save_imatrix: stored collected data after 50 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
123
- [50]14.6774,[51]14.5402,[52]14.6070,[53]14.8337,[54]15.1521,[55]15.4017,[56]15.5381,[57]15.5412,[58]15.5433,[59]15.3203,
124
  save_imatrix: stored collected data after 60 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
125
- [60]15.1412,[61]14.9436,[62]14.7716,[63]14.8956,[64]15.0538,[65]14.9025,[66]14.9251,[67]14.8897,[68]14.8316,[69]14.7527,
126
  save_imatrix: stored collected data after 70 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
127
- [70]14.6922,[71]14.6700,[72]14.6271,[73]14.6927,[74]14.6179,[75]14.4837,[76]14.4578,[77]14.4619,[78]14.4124,[79]14.3156,
128
  save_imatrix: stored collected data after 80 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
129
- [80]14.3808,[81]14.4619,[82]14.4841,[83]14.5843,[84]14.6263,[85]14.3919,[86]14.3208,[87]14.1543,[88]14.1997,[89]14.1722,
130
  save_imatrix: stored collected data after 90 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
131
- [90]14.2455,[91]14.1862,[92]14.0935,[93]14.0125,[94]13.8942,[95]13.8216,[96]13.7275,[97]13.6539,[98]13.5585,[99]13.6079,
132
  save_imatrix: stored collected data after 100 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
133
- [100]13.6242,[101]13.7690,[102]13.8623,[103]13.9214,[104]14.1043,[105]14.2414,[106]14.2558,[107]14.2652,[108]14.1996,[109]14.2351,
134
  save_imatrix: stored collected data after 110 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
135
- [110]14.1081,[111]13.9695,[112]13.7990,[113]13.8842,[114]13.9366,[115]13.9254,[116]13.8930,[117]13.9520,[118]13.9874,[119]14.0052,
136
  save_imatrix: stored collected data after 120 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
137
- [120]13.9951,[121]14.0036,[122]13.9634,[123]13.9903,[124]14.0884,[125]14.1808,[126]14.2925,[127]14.3374,[128]14.3945,
138
  save_imatrix: stored collected data after 128 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
139
 
140
- llama_print_timings: load time = 6383.63 ms
141
  llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
142
- llama_print_timings: prompt eval time = 91484.26 ms / 65536 tokens ( 1.40 ms per token, 716.36 tokens per second)
143
  llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
144
- llama_print_timings: total time = 98451.28 ms / 65537 tokens
145
 
146
- Final estimate: PPL = 14.3945 +/- 0.28244
 
1
+ llama_model_loader: loaded meta data with 29 key-value pairs and 464 tensors from Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/Gemma-2-9B-It-SPPO-Iter3.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
2
  llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
3
  llama_model_loader: - kv 0: general.architecture str = gemma2
4
  llama_model_loader: - kv 1: general.name str = Gemma-2-9B-It-SPPO-Iter3
 
14
  llama_model_loader: - kv 11: general.file_type u32 = 7
15
  llama_model_loader: - kv 12: gemma2.attn_logit_softcapping f32 = 50.000000
16
  llama_model_loader: - kv 13: gemma2.final_logit_softcapping f32 = 30.000000
17
+ llama_model_loader: - kv 14: gemma2.attention.sliding_window u32 = 4096
18
+ llama_model_loader: - kv 15: tokenizer.ggml.model str = llama
19
+ llama_model_loader: - kv 16: tokenizer.ggml.pre str = default
20
+ llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,256000] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
21
+ llama_model_loader: - kv 18: tokenizer.ggml.scores arr[f32,256000] = [0.000000, 0.000000, 0.000000, 0.0000...
22
+ llama_model_loader: - kv 19: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
23
+ llama_model_loader: - kv 20: tokenizer.ggml.bos_token_id u32 = 2
24
+ llama_model_loader: - kv 21: tokenizer.ggml.eos_token_id u32 = 1
25
+ llama_model_loader: - kv 22: tokenizer.ggml.unknown_token_id u32 = 3
26
+ llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 0
27
+ llama_model_loader: - kv 24: tokenizer.ggml.add_bos_token bool = true
28
+ llama_model_loader: - kv 25: tokenizer.ggml.add_eos_token bool = false
29
+ llama_model_loader: - kv 26: tokenizer.chat_template str = {{ bos_token }}{% if messages[0]['rol...
30
+ llama_model_loader: - kv 27: tokenizer.ggml.add_space_prefix bool = false
31
+ llama_model_loader: - kv 28: general.quantization_version u32 = 2
32
  llama_model_loader: - type f32: 169 tensors
33
  llama_model_loader: - type q8_0: 295 tensors
34
+ llm_load_vocab: special tokens cache size = 364
35
  llm_load_vocab: token to piece cache size = 1.6014 MB
36
  llm_load_print_meta: format = GGUF V3 (latest)
37
  llm_load_print_meta: arch = gemma2
38
  llm_load_print_meta: vocab type = SPM
39
  llm_load_print_meta: n_vocab = 256000
40
  llm_load_print_meta: n_merges = 0
41
+ llm_load_print_meta: vocab_only = 0
42
  llm_load_print_meta: n_ctx_train = 8192
43
  llm_load_print_meta: n_embd = 3584
44
+ llm_load_print_meta: n_layer = 42
45
  llm_load_print_meta: n_head = 16
46
  llm_load_print_meta: n_head_kv = 8
 
47
  llm_load_print_meta: n_rot = 224
48
+ llm_load_print_meta: n_swa = 4096
49
  llm_load_print_meta: n_embd_head_k = 256
50
  llm_load_print_meta: n_embd_head_v = 256
51
  llm_load_print_meta: n_gqa = 2
 
104
  llama_new_context_with_model: KV self size = 168.00 MiB, K (f16): 84.00 MiB, V (f16): 84.00 MiB
105
  llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
106
  llama_new_context_with_model: CUDA0 compute buffer size = 507.00 MiB
107
+ llama_new_context_with_model: CUDA_Host compute buffer size = 9.01 MiB
108
  llama_new_context_with_model: graph nodes = 1690
109
  llama_new_context_with_model: graph splits = 2
110
 
111
  system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
112
  compute_imatrix: tokenizing the input ..
113
+ compute_imatrix: tokenization took 119.102 ms
114
  compute_imatrix: computing over 128 chunks with batch_size 512
115
+ compute_imatrix: 0.85 seconds per pass - ETA 1.82 minutes
116
+ [1]8.2870,[2]5.5692,[3]4.8574,[4]6.1032,[5]6.2583,[6]5.2453,[7]5.7902,[8]6.1617,[9]6.4089,
117
  save_imatrix: stored collected data after 10 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
118
+ [10]5.6400,[11]5.7908,[12]6.3911,[13]6.9578,[14]7.1997,[15]7.8125,[16]8.1619,[17]8.3215,[18]8.6900,[19]8.3100,
119
  save_imatrix: stored collected data after 20 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
120
+ [20]8.5375,[21]8.6913,[22]8.6501,[23]8.8311,[24]8.9421,[25]9.1331,[26]8.8236,[27]9.0735,[28]9.2551,[29]9.1570,
121
  save_imatrix: stored collected data after 30 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
122
+ [30]9.0664,[31]8.5109,[32]8.2338,[33]8.1731,[34]8.0490,[35]8.0060,[36]8.0236,[37]8.0200,[38]8.1009,[39]8.2803,
123
  save_imatrix: stored collected data after 40 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
124
+ [40]8.4557,[41]8.6042,[42]8.8991,[43]9.2142,[44]9.4949,[45]9.6524,[46]9.4993,[47]9.5265,[48]9.7377,[49]9.8946,
125
  save_imatrix: stored collected data after 50 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
126
+ [50]9.6778,[51]9.7231,[52]9.7711,[53]9.9173,[54]10.1400,[55]10.2482,[56]10.3176,[57]10.3220,[58]10.3506,[59]10.1951,
127
  save_imatrix: stored collected data after 60 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
128
+ [60]10.0656,[61]9.9265,[62]9.8784,[63]9.9241,[64]9.9184,[65]9.8962,[66]9.9283,[67]9.8701,[68]9.7891,[69]9.8077,
129
  save_imatrix: stored collected data after 70 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
130
+ [70]9.7677,[71]9.7514,[72]9.7605,[73]9.7345,[74]9.6684,[75]9.6283,[76]9.6233,[77]9.6320,[78]9.6199,[79]9.5661,
131
  save_imatrix: stored collected data after 80 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
132
+ [80]9.6315,[81]9.6843,[82]9.6604,[83]9.6603,[84]9.7184,[85]9.5761,[86]9.5323,[87]9.4649,[88]9.4783,[89]9.5114,
133
  save_imatrix: stored collected data after 90 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
134
+ [90]9.5357,[91]9.4612,[92]9.3816,[93]9.2879,[94]9.1958,[95]9.1295,[96]9.0453,[97]8.9720,[98]8.9035,[99]8.9543,
135
  save_imatrix: stored collected data after 100 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
136
+ [100]8.9876,[101]9.0807,[102]9.1655,[103]9.2443,[104]9.4136,[105]9.5366,[106]9.5596,[107]9.5914,[108]9.6093,[109]9.5883,
137
  save_imatrix: stored collected data after 110 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
138
+ [110]9.5676,[111]9.4936,[112]9.4150,[113]9.4655,[114]9.4851,[115]9.4909,[116]9.4830,[117]9.5297,[118]9.5509,[119]9.5557,
139
  save_imatrix: stored collected data after 120 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
140
+ [120]9.5669,[121]9.6127,[122]9.5730,[123]9.6293,[124]9.6857,[125]9.7251,[126]9.7980,[127]9.8556,[128]9.9097,
141
  save_imatrix: stored collected data after 128 chunks in Gemma-2-9B-It-SPPO-Iter3-IMat-GGUF/imatrix.dat
142
 
143
+ llama_print_timings: load time = 14925.71 ms
144
  llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
145
+ llama_print_timings: prompt eval time = 96055.84 ms / 65536 tokens ( 1.47 ms per token, 682.27 tokens per second)
146
  llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
147
+ llama_print_timings: total time = 111564.87 ms / 65537 tokens
148
 
149
+ Final estimate: PPL = 9.9097 +/- 0.16369