--- base_model: Bin12345/AutoCoder inference: false library_name: gguf license: apache-2.0 pipeline_tag: text-generation quantized_by: legraphista tags: - quantized - GGUF - imatrix - quantization - imat - imatrix - static --- # AutoCoder-IMat-GGUF _Llama.cpp imatrix quantization of Bin12345/AutoCoder_ Original Model: [Bin12345/AutoCoder](https://huggingface.co./Bin12345/AutoCoder) Original dtype: `BF16` (`bfloat16`) Quantized by: llama.cpp [b3010](https://github.com/ggerganov/llama.cpp/releases/tag/b3010) IMatrix dataset: [here](https://gist.githubusercontent.com/legraphista/d6d93f1a254bcfc58e0af3777eaec41e/raw/d380e7002cea4a51c33fffd47db851942754e7cc/imatrix.calibration.medium.raw) - [AutoCoder-IMat-GGUF](#autocoder-imat-gguf) - [Files](#files) - [IMatrix](#imatrix) - [Common Quants](#common-quants) - [All Quants](#all-quants) - [Downloading using huggingface-cli](#downloading-using-huggingface-cli) - [Inference](#inference) - [Simple chat template](#simple-chat-template) - [Chat template with system prompt](#chat-template-with-system-prompt) - [Llama.cpp](#llama-cpp) - [FAQ](#faq) - [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere) - [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf) --- ## Files ### IMatrix Status: ✅ Available Link: [here](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/imatrix.dat) ### Common Quants | Filename | Quant type | File Size | Status | Uses IMatrix | Is Split | | -------- | ---------- | --------- | ------ | ------------ | -------- | | [AutoCoder.Q8_0.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q8_0.gguf) | Q8_0 | 35.43GB | ✅ Available | ⚪ Static | 📦 No | [AutoCoder.Q6_K.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q6_K.gguf) | Q6_K | 27.36GB | ✅ Available | ⚪ Static | 📦 No | [AutoCoder.Q4_K.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q4_K.gguf) | Q4_K | 19.94GB | ✅ Available | 🟢 IMatrix | 📦 No | [AutoCoder.Q3_K.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q3_K.gguf) | Q3_K | 16.09GB | ✅ Available | 🟢 IMatrix | 📦 No | [AutoCoder.Q2_K.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q2_K.gguf) | Q2_K | 12.36GB | ✅ Available | 🟢 IMatrix | 📦 No ### All Quants | Filename | Quant type | File Size | Status | Uses IMatrix | Is Split | | -------- | ---------- | --------- | ------ | ------------ | -------- | | [AutoCoder.BF16/*](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/tree/main/AutoCoder.BF16) | BF16 | 66.69GB | ✅ Available | ⚪ Static | ✂ Yes | [AutoCoder.FP16/*](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/tree/main/AutoCoder.FP16) | F16 | 66.69GB | ✅ Available | ⚪ Static | ✂ Yes | [AutoCoder.Q5_K.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q5_K.gguf) | Q5_K | 23.54GB | ✅ Available | ⚪ Static | 📦 No | [AutoCoder.Q5_K_S.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q5_K_S.gguf) | Q5_K_S | 22.96GB | ✅ Available | ⚪ Static | 📦 No | [AutoCoder.Q4_K_S.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q4_K_S.gguf) | Q4_K_S | 18.94GB | ✅ Available | 🟢 IMatrix | 📦 No | [AutoCoder.Q3_K_L.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q3_K_L.gguf) | Q3_K_L | 17.56GB | ✅ Available | 🟢 IMatrix | 📦 No | [AutoCoder.Q3_K_S.gguf](https://huggingface.co./legraphista/AutoCoder-IMat-GGUF/blob/main/AutoCoder.Q3_K_S.gguf) | Q3_K_S | 14.42GB | ✅ Available | 🟢 IMatrix | 📦 No | AutoCoder.Q2_K_S | Q2_K_S | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ4_NL | IQ4_NL | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ4_XS | IQ4_XS | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ3_M | IQ3_M | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ3_S | IQ3_S | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ3_XS | IQ3_XS | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ3_XXS | IQ3_XXS | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ2_M | IQ2_M | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ2_S | IQ2_S | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ2_XS | IQ2_XS | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ2_XXS | IQ2_XXS | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ1_M | IQ1_M | - | ⏳ Processing | 🟢 IMatrix | - | AutoCoder.IQ1_S | IQ1_S | - | ⏳ Processing | 🟢 IMatrix | - ## Downloading using huggingface-cli If you do not have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Download the specific file you want: ``` huggingface-cli download legraphista/AutoCoder-IMat-GGUF --include "AutoCoder.Q8_0.gguf" --local-dir ./ ``` If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download legraphista/AutoCoder-IMat-GGUF --include "AutoCoder.Q8_0/*" --local-dir ./ # see FAQ for merging GGUF's ``` --- ## Inference ### Simple chat template ``` Human: Can you provide ways to eat combinations of bananas and dragonfruits? Assistant: Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey.<|EOT|> Human: What about solving an 2x + 3 = 7 equation? Assistant: ``` ### Chat template with system prompt ``` You are a helpful AI. Human: Can you provide ways to eat combinations of bananas and dragonfruits? Assistant: Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey.<|EOT|> Human: What about solving an 2x + 3 = 7 equation? Assistant: ``` ### Llama.cpp ``` llama.cpp/main -m AutoCoder.Q8_0.gguf --color -i -p "prompt here (according to the chat template)" ``` --- ## FAQ ### Why is the IMatrix not applied everywhere? According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results). ### How do I merge a split GGUF? 1. Make sure you have `gguf-split` available - To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases - Download the appropriate zip for your system from the latest release - Unzip the archive and you should be able to find `gguf-split` 2. Locate your GGUF chunks folder (ex: `AutoCoder.Q8_0`) 3. Run `gguf-split --merge AutoCoder.Q8_0/AutoCoder.Q8_0-00001-of-XXXXX.gguf AutoCoder.Q8_0.gguf` - Make sure to point `gguf-split` to the first chunk of the split. --- Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)!