File size: 1,052 Bytes
f1628fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901d1f6
 
 
 
 
 
f1628fc
 
 
 
 
 
 
590935f
f1628fc
 
590935f
f1628fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language:
- en
library_name: ultralytics
pipeline_tag: image-classification
tags:
- mask
---

## How to Use

To use this model in your project, follow the steps below:

### 1. Installation

Ensure you have the `ultralytics` library installed, which is used for YOLO models:

```bash
pip install ultralytics
```

```text
# class
with_mask
without_mask
```

### 2. Load the Model

You can load the model and perform detection on an image as follows:
```python
from ultralytics import YOLO

# Load the model
model = YOLO("./mask-11x-224.pt")

# Perform detection on an image
results = model("image.png", imgsz=224)

# Display or process the results
results.show()  # This will display the image with detected objects
```

### 3. Model Inference
The results object contains bounding boxes, labels (e.g., numbers or operators), and confidence scores for each detected object.

Access them like this:

```python
# View results
for r in results:
    print(r.probs)  # print the Probs object containing the detected class probabilities
```

![](result.png)