Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
---
|
5 |
+
pipeline_tag: sentence-similarity
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# leewaay/kpf-bert-base-klueSTS-cross
|
13 |
+
|
14 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: A cross encoder trained with the pretrained [`jinmang2/kpfbert`](https://huggingface.co/jinmang2/kpfbert) model on the [KLUE STS dataset](https://huggingface.co/datasets/klue#sts) for sentence similarity tasks. It's specifically designed for direct evaluation of sentence pairs, making it highly effective for [Re-Ranking](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) and [Augmented SBERT](https://www.sbert.net/examples/training/data_augmentation/README.html) for data labeling tasks aimed at enhancing SBERT.
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```bash
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import CrossEncoder
|
28 |
+
pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
|
29 |
+
|
30 |
+
model = CrossEncoder('leewaay/kpf-bert-base-klueSTS-cross')
|
31 |
+
scores = model.predict(pairs)
|
32 |
+
print(scores)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Citing & Authors
|
36 |
+
|
37 |
+
[Wonseok Lee](https://github.com/leewaay)
|