leewaay commited on
Commit
3e97cfe
1 Parent(s): 1512fcc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ko
4
+ ---
5
+ pipeline_tag: sentence-similarity
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - transformers
10
+ ---
11
+
12
+ # leewaay/kpf-bert-base-klueSTS-cross
13
+
14
+ This is a [sentence-transformers](https://www.SBERT.net) model: A cross encoder trained with the pretrained [`jinmang2/kpfbert`](https://huggingface.co/jinmang2/kpfbert) model on the [KLUE STS dataset](https://huggingface.co/datasets/klue#sts) for sentence similarity tasks. It's specifically designed for direct evaluation of sentence pairs, making it highly effective for [Re-Ranking](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) and [Augmented SBERT](https://www.sbert.net/examples/training/data_augmentation/README.html) for data labeling tasks aimed at enhancing SBERT.
15
+
16
+ ## Usage (Sentence-Transformers)
17
+
18
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
+
20
+ ```bash
21
+ pip install -U sentence-transformers
22
+ ```
23
+
24
+ Then you can use the model like this:
25
+
26
+ ```python
27
+ from sentence_transformers import CrossEncoder
28
+ pairs = [('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]
29
+
30
+ model = CrossEncoder('leewaay/kpf-bert-base-klueSTS-cross')
31
+ scores = model.predict(pairs)
32
+ print(scores)
33
+ ```
34
+
35
+ ## Citing & Authors
36
+
37
+ [Wonseok Lee](https://github.com/leewaay)