--- base_model: /exports/eddie/scratch/s1970716/models/summarization/longt5_xl_summ_screen/checkpoint-140 tags: - generated_from_trainer datasets: - tau/scrolls metrics: - rouge model-index: - name: longt5_xl_summ_screen_20 results: - task: name: Summarization type: summarization dataset: name: tau/scrolls summ_screen_fd type: tau/scrolls config: summ_screen_fd split: validation args: summ_screen_fd metrics: - name: Rouge1 type: rouge value: 28.1708 --- # longt5_xl_summ_screen_20 This model is a fine-tuned version of [/exports/eddie/scratch/s1970716/models/summarization/longt5_xl_summ_screen/checkpoint-140](https://huggingface.co.//exports/eddie/scratch/s1970716/models/summarization/longt5_xl_summ_screen/checkpoint-140) on the tau/scrolls summ_screen_fd dataset. It achieves the following results on the evaluation set: - Loss: 3.1917 - Rouge1: 28.1708 - Rouge2: 6.6895 - Rougel: 18.1637 - Rougelsum: 24.3987 - Gen Len: 96.2041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:--------:| | 0.4063 | 0.97 | 14 | 3.7385 | 27.9171 | 6.7215 | 17.9315 | 24.363 | 71.9083 | | 0.3125 | 1.95 | 28 | 3.1917 | 28.1708 | 6.6895 | 18.1637 | 24.3987 | 96.2041 | | 0.2177 | 2.99 | 43 | 3.9998 | 29.3167 | 5.9 | 17.3608 | 25.6945 | 198.0473 | | 0.1753 | 3.97 | 57 | 4.2287 | 29.0605 | 6.2534 | 17.5744 | 25.6415 | 158.6509 | | 0.2747 | 4.94 | 71 | 4.1027 | 31.2245 | 6.5663 | 18.1588 | 26.8996 | 118.4438 | | 0.1045 | 5.98 | 86 | 5.0581 | 30.6056 | 6.8892 | 18.4933 | 26.4027 | 92.9882 | | 0.0875 | 6.96 | 100 | 4.5941 | 32.5234 | 7.3736 | 18.8958 | 28.4738 | 160.8964 | | 0.1572 | 8.0 | 115 | 4.9386 | 31.4658 | 7.2592 | 18.4796 | 27.6047 | 121.0178 | | 0.0867 | 8.97 | 129 | 4.5565 | 32.0531 | 7.0692 | 18.5551 | 27.3373 | 160.4793 | | 0.0748 | 9.74 | 140 | 5.0866 | 32.2717 | 7.7004 | 18.9107 | 28.3874 | 124.1893 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3