File size: 2,407 Bytes
5387a25 3f12c27 5387a25 3f12c27 5387a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: google/long-t5-tglobal-xl
tags:
- generated_from_trainer
datasets:
- learn3r/summ_screen_fd_bp
model-index:
- name: longt5_xl_sfd_bp_10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# longt5_xl_sfd_bp_10
This model is a fine-tuned version of [google/long-t5-tglobal-xl](https://huggingface.co./google/long-t5-tglobal-xl) on the learn3r/summ_screen_fd_bp dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3973 | 0.97 | 14 | 1.9027 |
| 1.9188 | 1.95 | 28 | 1.6941 |
| 1.4297 | 2.99 | 43 | 1.5011 |
| 1.2759 | 3.97 | 57 | 1.5048 |
| 1.1421 | 4.94 | 71 | 1.5463 |
| 0.9605 | 5.98 | 86 | 1.6270 |
| 0.8082 | 6.96 | 100 | 1.7646 |
| 0.664 | 8.0 | 115 | 1.7878 |
| 0.5471 | 8.97 | 129 | 1.9500 |
| 0.4349 | 9.95 | 143 | 1.9657 |
| 0.4338 | 10.99 | 158 | 2.1351 |
| 0.2887 | 11.97 | 172 | 2.1166 |
| 0.2753 | 12.94 | 186 | 2.4357 |
| 0.2114 | 13.98 | 201 | 2.5789 |
| 0.1805 | 14.96 | 215 | 2.6075 |
| 0.1543 | 16.0 | 230 | 2.5597 |
| 0.5166 | 16.97 | 244 | 2.5067 |
| 0.1117 | 17.95 | 258 | 2.8087 |
| 0.0895 | 18.99 | 273 | 2.7578 |
| 0.0779 | 19.48 | 280 | 2.8921 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|