Использование предобученных моделей
Hub упрощает выбор подходящей модели, поэтому ее использование в любой задаче заключается в запуске нескольких строк кода. Давайте посмотрим, как это сделать и как внести свой вклад в сообщество.
Допустим, мы ищем модель для французского языка, которая может выполнять заполнение пропущенных слов в предложении.
Мы выберем для этой задачи чекпоинт camembert-base
. Идентификатор camembert-base
– все, что нам нужно, чтобы начать использовать модель! Как вы видели в предыдущих главах, мы можем инициализировать модель с использованием функции pipeline()
:
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert-base")
results = camembert_fill_mask("Le camembert est <mask> :)")
[
{'sequence': 'Le camembert est délicieux :)', 'score': 0.49091005325317383, 'token': 7200, 'token_str': 'délicieux'},
{'sequence': 'Le camembert est excellent :)', 'score': 0.1055697426199913, 'token': 2183, 'token_str': 'excellent'},
{'sequence': 'Le camembert est succulent :)', 'score': 0.03453313186764717, 'token': 26202, 'token_str': 'succulent'},
{'sequence': 'Le camembert est meilleur :)', 'score': 0.0330314114689827, 'token': 528, 'token_str': 'meilleur'},
{'sequence': 'Le camembert est parfait :)', 'score': 0.03007650189101696, 'token': 1654, 'token_str': 'parfait'}
]
Как видите, загрузить модель в пайплайн очень просто. Единственное, на что вам нужно обратить внимание, это чтобы выбранный чекпоинт подходил для задачи, для которой он будет использоваться. Например, здесь мы загружаем чекпоинт camembert-base
в пайплайн fill-mask
, что совершенно нормально. Но если бы мы загрузили эту контрольную точку в пайплайн text-classification
, результаты не имели бы никакого смысла, потому что выходной слой camembert-base
не подходит для этой задачи! Мы рекомендуем использовать селектор задач в интерфейсе Hugging Face Hub, чтобы выбрать соответствующие чекпоинты:
Вы также можете инициализировать модель не через пайплайн, а путем создания экземпляра класса модели:
from transformers import CamembertTokenizer, CamembertForMaskedLM
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
model = CamembertForMaskedLM.from_pretrained("camembert-base")
Однако вместо этого мы рекомендуем использовать Auto*
классы, так как они по своей конструкции не зависят от архитектуры используемой модели. В то время как предыдущий пример кода ограничивает пользователей чекпоинтами, загружаемыми в архитектуре CamemBERT, использование классов Auto*
упрощает переключение между чекпоинтами:
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("camembert-base")
model = AutoModelForMaskedLM.from_pretrained("camembert-base")
При использовании предварительно обученной модели обязательно проверьте: как она была обучена, на каких наборах данных, ее ограничениях и смещениях. Вся эта информация должна быть указана в карточке модели.