File size: 1,873 Bytes
d493f30
 
1205d4b
d493f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40dfc29
 
d493f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205d4b
 
d493f30
 
 
 
40dfc29
d493f30
 
 
 
 
40dfc29
 
 
 
 
 
 
 
d493f30
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-furtos
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-furtos

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3726
- Accuracy: 0.95

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 64

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.125 | 8    | 0.7644          | 0.4      |
| 0.7578        | 1.125 | 16   | 0.8079          | 0.55     |
| 0.6084        | 2.125 | 24   | 0.7155          | 0.55     |
| 0.6016        | 3.125 | 32   | 0.6016          | 0.6      |
| 0.5236        | 4.125 | 40   | 0.6041          | 0.65     |
| 0.5236        | 5.125 | 48   | 0.4796          | 0.75     |
| 0.547         | 6.125 | 56   | 0.3917          | 0.95     |
| 0.4097        | 7.125 | 64   | 0.3726          | 0.95     |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.1+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1