File size: 10,241 Bytes
cb87d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
model-index:
- name: text_shortening_model_v79
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_shortening_model_v79

This model is a fine-tuned version of [t5-small](https://huggingface.co./t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0551
- Bert precision: 0.8947
- Bert recall: 0.8962
- Bert f1-score: 0.895
- Average word count: 6.7804
- Max word count: 16
- Min word count: 1
- Average token count: 10.8466
- % shortened texts with length > 12: 1.5951

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:-----------:|:-------------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 2.0194        | 1.0   | 30   | 1.4487          | 0.8778         | 0.8746      | 0.8755        | 6.7755             | 16             | 1              | 10.7288             | 2.3313                             |
| 1.58          | 2.0   | 60   | 1.3193          | 0.8835         | 0.8837      | 0.883         | 6.9301             | 16             | 2              | 10.7791             | 2.3313                             |
| 1.4385        | 3.0   | 90   | 1.2492          | 0.8833         | 0.8855      | 0.8839        | 7.0368             | 16             | 2              | 10.9816             | 2.6994                             |
| 1.3616        | 4.0   | 120  | 1.2111          | 0.8877         | 0.8873      | 0.887         | 6.8466             | 16             | 2              | 10.7509             | 1.8405                             |
| 1.2976        | 5.0   | 150  | 1.1685          | 0.8869         | 0.8878      | 0.8868        | 6.8564             | 17             | 2              | 10.8172             | 1.8405                             |
| 1.2495        | 6.0   | 180  | 1.1559          | 0.8885         | 0.8895      | 0.8885        | 6.8577             | 16             | 2              | 10.8564             | 2.0859                             |
| 1.201         | 7.0   | 210  | 1.1353          | 0.8889         | 0.891       | 0.8894        | 6.9521             | 16             | 2              | 11.0012             | 2.3313                             |
| 1.1717        | 8.0   | 240  | 1.1164          | 0.8892         | 0.89        | 0.8891        | 6.8601             | 16             | 1              | 10.8933             | 2.0859                             |
| 1.1352        | 9.0   | 270  | 1.1110          | 0.8902         | 0.8891      | 0.8891        | 6.708              | 16             | 1              | 10.7436             | 1.1043                             |
| 1.0984        | 10.0  | 300  | 1.1037          | 0.8901         | 0.8909      | 0.8901        | 6.8233             | 17             | 1              | 10.8503             | 1.9632                             |
| 1.0745        | 11.0  | 330  | 1.0937          | 0.8894         | 0.892       | 0.8902        | 6.9362             | 17             | 2              | 10.9742             | 2.3313                             |
| 1.0509        | 12.0  | 360  | 1.0907          | 0.8911         | 0.8916      | 0.8908        | 6.8233             | 17             | 1              | 10.8564             | 1.9632                             |
| 1.0269        | 13.0  | 390  | 1.0805          | 0.8906         | 0.8934      | 0.8915        | 6.9448             | 17             | 1              | 11.0135             | 2.2086                             |
| 1.0126        | 14.0  | 420  | 1.0784          | 0.8912         | 0.8935      | 0.8919        | 6.9264             | 17             | 2              | 10.973              | 2.3313                             |
| 0.9959        | 15.0  | 450  | 1.0725          | 0.8929         | 0.8944      | 0.8932        | 6.8294             | 17             | 1              | 10.8957             | 2.2086                             |
| 0.9717        | 16.0  | 480  | 1.0715          | 0.8916         | 0.8941      | 0.8924        | 6.919              | 17             | 1              | 10.9963             | 2.0859                             |
| 0.9552        | 17.0  | 510  | 1.0727          | 0.8935         | 0.8949      | 0.8937        | 6.8282             | 17             | 1              | 10.9055             | 1.9632                             |
| 0.9461        | 18.0  | 540  | 1.0665          | 0.8947         | 0.8955      | 0.8947        | 6.8061             | 17             | 1              | 10.8613             | 1.5951                             |
| 0.926         | 19.0  | 570  | 1.0664          | 0.8948         | 0.896       | 0.895         | 6.7853             | 16             | 1              | 10.8515             | 1.3497                             |
| 0.9192        | 20.0  | 600  | 1.0636          | 0.8948         | 0.8953      | 0.8946        | 6.7718             | 16             | 1              | 10.8209             | 1.4724                             |
| 0.9101        | 21.0  | 630  | 1.0581          | 0.8954         | 0.897       | 0.8957        | 6.8221             | 16             | 1              | 10.8724             | 1.5951                             |
| 0.899         | 22.0  | 660  | 1.0599          | 0.8954         | 0.8974      | 0.8959        | 6.8405             | 16             | 1              | 10.8982             | 1.5951                             |
| 0.8843        | 23.0  | 690  | 1.0586          | 0.8943         | 0.8962      | 0.8948        | 6.8393             | 17             | 2              | 10.9055             | 1.9632                             |
| 0.8779        | 24.0  | 720  | 1.0572          | 0.8932         | 0.8961      | 0.8942        | 6.8736             | 17             | 2              | 10.9656             | 2.0859                             |
| 0.8725        | 25.0  | 750  | 1.0573          | 0.8939         | 0.8963      | 0.8947        | 6.8098             | 16             | 2              | 10.9104             | 1.7178                             |
| 0.8567        | 26.0  | 780  | 1.0591          | 0.8951         | 0.8968      | 0.8955        | 6.7926             | 17             | 1              | 10.8945             | 1.5951                             |
| 0.8549        | 27.0  | 810  | 1.0577          | 0.8945         | 0.8962      | 0.8948        | 6.8135             | 17             | 1              | 10.9018             | 1.8405                             |
| 0.8467        | 28.0  | 840  | 1.0570          | 0.8948         | 0.8961      | 0.895         | 6.7669             | 16             | 1              | 10.8405             | 1.4724                             |
| 0.833         | 29.0  | 870  | 1.0577          | 0.895          | 0.896       | 0.895         | 6.7546             | 16             | 1              | 10.8294             | 1.3497                             |
| 0.8284        | 30.0  | 900  | 1.0548          | 0.8942         | 0.8957      | 0.8945        | 6.7816             | 16             | 1              | 10.8589             | 1.4724                             |
| 0.8296        | 31.0  | 930  | 1.0565          | 0.8947         | 0.8967      | 0.8952        | 6.8037             | 16             | 1              | 10.8982             | 1.4724                             |
| 0.8156        | 32.0  | 960  | 1.0550          | 0.8945         | 0.8961      | 0.8948        | 6.7914             | 16             | 2              | 10.8601             | 1.5951                             |
| 0.8095        | 33.0  | 990  | 1.0567          | 0.8944         | 0.8962      | 0.8948        | 6.8049             | 16             | 2              | 10.881              | 1.7178                             |
| 0.8066        | 34.0  | 1020 | 1.0564          | 0.8948         | 0.8961      | 0.895         | 6.7853             | 16             | 1              | 10.8405             | 1.8405                             |
| 0.817         | 35.0  | 1050 | 1.0567          | 0.8951         | 0.8961      | 0.8952        | 6.7509             | 16             | 1              | 10.8172             | 1.5951                             |
| 0.8155        | 36.0  | 1080 | 1.0563          | 0.8949         | 0.8964      | 0.8952        | 6.7669             | 16             | 1              | 10.838              | 1.5951                             |
| 0.808         | 37.0  | 1110 | 1.0560          | 0.8946         | 0.8965      | 0.8951        | 6.7926             | 16             | 1              | 10.8675             | 1.7178                             |
| 0.8049        | 38.0  | 1140 | 1.0554          | 0.895          | 0.8965      | 0.8953        | 6.7742             | 16             | 1              | 10.8393             | 1.4724                             |
| 0.8002        | 39.0  | 1170 | 1.0550          | 0.8946         | 0.8962      | 0.8949        | 6.7877             | 16             | 1              | 10.8491             | 1.5951                             |
| 0.7912        | 40.0  | 1200 | 1.0551          | 0.8947         | 0.8962      | 0.895         | 6.7804             | 16             | 1              | 10.8466             | 1.5951                             |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3