File size: 6,614 Bytes
7cd21b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: text_shortening_model_v40
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text_shortening_model_v40

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3335
- Rouge1: 0.4511
- Rouge2: 0.2377
- Rougel: 0.4039
- Rougelsum: 0.4038
- Bert precision: 0.8635
- Bert recall: 0.8629
- Average word count: 8.5826
- Max word count: 16
- Min word count: 5
- Average token count: 16.5616
- % shortened texts with length > 12: 4.8048

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
| 3.0922        | 1.0   | 73   | 2.2144          | 0.4539 | 0.2272 | 0.4068 | 0.4055    | 0.8657         | 0.8684      | 8.7027             | 15             | 5              | 14.3423             | 4.2042                             |
| 1.75          | 2.0   | 146  | 2.0055          | 0.4658 | 0.2381 | 0.4085 | 0.4088    | 0.8654         | 0.8656      | 8.7087             | 16             | 5              | 15.1652             | 4.8048                             |
| 1.311         | 3.0   | 219  | 2.0021          | 0.456  | 0.2257 | 0.4124 | 0.4117    | 0.8644         | 0.8646      | 8.6396             | 15             | 5              | 15.9279             | 5.1051                             |
| 1.0163        | 4.0   | 292  | 2.0698          | 0.467  | 0.2403 | 0.4159 | 0.4162    | 0.8636         | 0.8699      | 9.2973             | 16             | 5              | 17.2162             | 9.9099                             |
| 0.8546        | 5.0   | 365  | 2.0707          | 0.4527 | 0.2392 | 0.4129 | 0.4126    | 0.8637         | 0.8647      | 8.4895             | 17             | 4              | 16.3153             | 4.8048                             |
| 0.7222        | 6.0   | 438  | 2.1452          | 0.4562 | 0.2349 | 0.4077 | 0.4064    | 0.8693         | 0.8623      | 8.021              | 15             | 4              | 14.1051             | 1.2012                             |
| 0.5723        | 7.0   | 511  | 2.3520          | 0.4563 | 0.2403 | 0.4142 | 0.413     | 0.8666         | 0.8658      | 8.5916             | 16             | 5              | 16.5465             | 6.9069                             |
| 0.5274        | 8.0   | 584  | 2.2896          | 0.4502 | 0.2434 | 0.4077 | 0.4078    | 0.8639         | 0.8639      | 8.5586             | 14             | 5              | 14.8048             | 2.1021                             |
| 0.3767        | 9.0   | 657  | 2.2928          | 0.4565 | 0.2368 | 0.4125 | 0.4114    | 0.8682         | 0.8623      | 8.0691             | 14             | 4              | 14.4204             | 1.8018                             |
| 0.2987        | 10.0  | 730  | 2.5411          | 0.4539 | 0.2383 | 0.4057 | 0.4056    | 0.8652         | 0.8631      | 8.5826             | 15             | 5              | 15.6637             | 4.5045                             |
| 0.2319        | 11.0  | 803  | 2.8995          | 0.4513 | 0.2367 | 0.4069 | 0.4068    | 0.8631         | 0.8622      | 8.6607             | 17             | 5              | 16.4535             | 5.7057                             |
| 0.2167        | 12.0  | 876  | 2.7950          | 0.4632 | 0.2521 | 0.4163 | 0.4162    | 0.8673         | 0.8679      | 8.7267             | 16             | 4              | 16.3243             | 6.3063                             |
| 0.1952        | 13.0  | 949  | 2.6240          | 0.4537 | 0.2396 | 0.406  | 0.4059    | 0.8632         | 0.8648      | 8.8258             | 18             | 5              | 16.2613             | 7.8078                             |
| 0.1395        | 14.0  | 1022 | 2.8894          | 0.4588 | 0.2412 | 0.4141 | 0.4144    | 0.864          | 0.8658      | 8.6216             | 15             | 5              | 16.6426             | 3.6036                             |
| 0.1298        | 15.0  | 1095 | 2.7580          | 0.4562 | 0.2384 | 0.4085 | 0.4088    | 0.8661         | 0.8659      | 8.5586             | 15             | 5              | 16.3634             | 5.4054                             |
| 0.1044        | 16.0  | 1168 | 2.7724          | 0.466  | 0.2527 | 0.4175 | 0.4171    | 0.8677         | 0.8694      | 8.7387             | 15             | 4              | 16.4535             | 5.1051                             |
| 0.0944        | 17.0  | 1241 | 2.9161          | 0.4429 | 0.232  | 0.3986 | 0.3986    | 0.8619         | 0.8621      | 8.6306             | 16             | 5              | 16.5255             | 5.4054                             |
| 0.077         | 18.0  | 1314 | 3.1718          | 0.4549 | 0.2372 | 0.4054 | 0.4052    | 0.863          | 0.8639      | 8.6456             | 15             | 5              | 16.7447             | 4.8048                             |
| 0.0561        | 19.0  | 1387 | 3.2650          | 0.4581 | 0.2413 | 0.4092 | 0.4089    | 0.866          | 0.865       | 8.5195             | 16             | 5              | 16.4174             | 4.8048                             |
| 0.0542        | 20.0  | 1460 | 3.3335          | 0.4511 | 0.2377 | 0.4039 | 0.4038    | 0.8635         | 0.8629      | 8.5826             | 16             | 5              | 16.5616             | 4.8048                             |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3