--- library_name: transformers datasets: - 4DR1455/finance_questions language: - en base_model: - google-t5/t5-small --- # Model Card for Model ID This model is fine-tuned on google colab using the L4 GPU. ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [4DR1455/finance_questions](https://huggingface.co./datasets/4DR1455/finance_questions) Training data used 60% of the data. ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters These are the arguments used for fine-tuning: ``` model_args = ModelArguments( model_name="google-t5/t5-small", use_4bit=True, use_nested_quant=True, bnb_4bit_compute_dtype="bfloat16", bnb_4bit_quant_dtype="nf4", lora_alpha=128, lora_dropout=0.1, lora_r=8 ) script_args = ScriptArguments( per_device_train_batch_size=64, per_device_eval_batch_size=64, # auto_find_batch_size=True, gradient_accumulation_steps=4, learning_rate=2e-5, weight_decay=0.01, max_seq_length=512, dataset_name="4DR1455/finance_questions", bf16=True, optim='adafactor', lr_scheduler_type='cosine', packing=True, num_train_epochs=3, save_steps=20, logging_steps=10, eval_steps=20, warmup_steps=500, eval_strategy='steps', run_name="finetuning-llm-3", report_to="wandb", save_safetensors=False, label_names=['labels'], load_best_model_at_end=True, dataloader_num_workers=10, ) ``` #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]