lawrencewu
commited on
Commit
•
e4a1707
1
Parent(s):
e586316
Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,64 @@ model-index:
|
|
10 |
results: []
|
11 |
---
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
|
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
+
# Usage
|
14 |
+
|
15 |
+
You can use this model with the following code:
|
16 |
+
|
17 |
+
First, download the model
|
18 |
+
|
19 |
+
```python
|
20 |
+
from peft import AutoPeftModelForCausalLM
|
21 |
+
from transformers import AutoTokenizer
|
22 |
+
model_id='lawrencewu/hc-mistral-7B-v0.3-alpaca-first-100'
|
23 |
+
model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda()
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
+
tokenizer.pad_token = tokenizer.eos_token
|
26 |
+
```
|
27 |
+
|
28 |
+
Then, construct the prompt template like so:
|
29 |
+
|
30 |
+
```python
|
31 |
+
def prompt(nlq, cols):
|
32 |
+
return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query.
|
33 |
+
|
34 |
+
### Instruction:
|
35 |
+
|
36 |
+
NLQ: "{nlq}"
|
37 |
+
|
38 |
+
Columns: {cols}
|
39 |
+
|
40 |
+
### Response:
|
41 |
+
"""
|
42 |
+
|
43 |
+
def prompt_tok(nlq, cols):
|
44 |
+
_p = prompt(nlq, cols)
|
45 |
+
input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda()
|
46 |
+
out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000,
|
47 |
+
do_sample=False)
|
48 |
+
return tokenizer.batch_decode(out_ids.detach().cpu().numpy(),
|
49 |
+
skip_special_tokens=True)[0][len(_p):]
|
50 |
+
```
|
51 |
+
|
52 |
+
Finally, you can get predictions like this:
|
53 |
+
|
54 |
+
```python
|
55 |
+
# model inputs
|
56 |
+
nlq = "Exception count by exception and caller"
|
57 |
+
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route']
|
58 |
+
|
59 |
+
# print prediction
|
60 |
+
out = prompt_tok(nlq, cols)
|
61 |
+
print(nlq, '\n', out)
|
62 |
+
```
|
63 |
+
|
64 |
+
This will give you a prediction that looks like this:
|
65 |
+
|
66 |
+
```md
|
67 |
+
"{'breakdowns': ['exception.message', 'exception.type'], 'calculations': [{'op': 'COUNT'}], 'filters': [{'column': 'exception.message', 'op': 'exists'}, {'column': 'exception.type', 'op': 'exists'}], 'orders': [{'op': 'COUNT', 'order': 'descending'}], 'time_range': 7200}"
|
68 |
+
```
|
69 |
+
|
70 |
+
|
71 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
72 |
should probably proofread and complete it, then remove this comment. -->
|
73 |
|