--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2-finetuned-squad results: - task: name: Question Answering type: question-answering dataset: type: squad_v2 name: The Stanford Question Answering Dataset args: en metrics: - type: eval_exact value: 76.263 - type: eval_f1 value: 84.734 language: - en metrics: - exact_match - f1 --- # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.4539 - Exact Match: 80.60548722800378 - F1 score: 88.76870326468953 ## Model description This model is fine-tuned on the extractive question answering task -- The Stanford Question Answering Dataset -- SQuAD2.0. ## Intended uses & limitations More information needed ## Training and evaluation data Training and evaluation was done on SQuAD2.0. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.8702 | 1.0 | 5540 | 0.8943 | | 0.6972 | 2.0 | 11080 | 0.9087 | | 0.4998 | 3.0 | 16620 | 0.9890 | | 0.3601 | 4.0 | 22160 | 1.1892 | | 0.235 | 5.0 | 27700 | 1.4539 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.12.1 - Datasets 2.14.5 - Tokenizers 0.14.1