File size: 2,511 Bytes
8d0deec
 
 
 
 
 
 
 
 
f5aece1
8d0deec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5aece1
2ac193c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c0794
2ac193c
96c0794
2ac193c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

---
language: 
  - "lb"
license: "mit"
tags:
- "luxembourgish"
- "lëtzebuergesch"
- "text generation"
- "transfer learning"
model-index:
- name: "LuxGPT2-basedGER"
  results:
  - task:
      type: "text-generation"            # Required. Example: automatic-speech-recognition
      name: "Text Generation"             # Optional. Example: Speech Recognition
    dataset:
      type: "LuxembourgishTestDataset"          # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: "Luxembourgish Test Dataset"          # Required. A pretty name for the dataset. Example: Common Voice (French)
    metrics:
      - type: "accuracy"        # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: "0.34"      # Required. Example: 20.90
- name: "LuxGPT2-basedGER"
  results:
  - task:
      type: "text-generation"            # Required. Example: automatic-speech-recognition
      name: "Text Generation"             # Optional. Example: Speech Recognition
    dataset:
      type: "LuxembourgishTestDataset"          # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: "Luxembourgish Test Dataset"          # Required. A pretty name for the dataset. Example: Common Voice (French)
    metrics:
      - type: "perplexity"        # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: "45.89"      # Required. Example: 20.90
---
## LuxGPT-2 based GER

GPT-2 model for Text Generation in luxembourgish language, trained on 711 MB of text data, consisting of RTL.lu news articles, comments, parlament speeches, the luxembourgish Wikipedia, Newscrawl, Webcrawl and subtitles. Created via transfer learning with an German base model, feature space mapping from LB on Base feature space and gradual layer freezing.
The training took place on a 32 GB Nvidia Tesla V100
- with One Cycle policy for the learning rate
- with the help of fastai's LR finder
- for 53.4 hours
- for 20 epochs and 7 cycles
- using the fastai library


## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("laurabernardy/LuxGPT2-basedGER")

model = AutoModelForCausalLM.from_pretrained("laurabernardy/LuxGPT2-basedGER")
```
## Limitations and Biases
See the [GPT2 model card](https://huggingface.co./gpt2) for considerations on limitations and bias. See the [GPT2 documentation](https://huggingface.co./transformers/model_doc/gpt2.html) for details on GPT2.