--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-AST results: [] --- # ast-finetuned-audioset-10-10-0.4593-finetuned-AST This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3787 - Accuracy: 0.9463 - F1: 0.9426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7914 | 1.0 | 1467 | 0.5058 | 0.8788 | 0.8679 | | 0.5962 | 2.0 | 2934 | 0.4318 | 0.9018 | 0.8941 | | 0.0143 | 3.0 | 4401 | 0.4418 | 0.9233 | 0.9183 | | 0.0002 | 4.0 | 5868 | 0.3996 | 0.9387 | 0.9342 | | 0.0001 | 5.0 | 7335 | 0.3787 | 0.9463 | 0.9426 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3