File size: 18,671 Bytes
6ce7d82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
"""
Network definition file
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchaudio.functional import lfilter
from pytorch_lightning import LightningModule
import numpy as np
from scipy.signal import butter, gaussian
from copy import deepcopy
import argparse
class Net(LightningModule):
def __init__(self, **kwargs):
super().__init__()
parser = Net.add_model_specific_args()
for action in parser._actions:
if action.dest in kwargs:
action.default = kwargs[action.dest]
args = parser.parse_args([])
self.hparams.update(vars(args))
if not hasattr(self, f"_init_{self.hparams.net_type}_net"):
raise ValueError(f"Unknown net type {self.hparams.net_type}")
self._net = eval(f"self._init_{self.hparams.net_type}_net(n_inputs={self.hparams.n_inputs}, n_outputs={self.hparams.n_outputs})")
if self.hparams.bias is not None:
if hasattr(self.hparams.bias, "__iter__"):
for i in range(len(self.hparams.bias)):
self._net[-1].c.bias[i].data.fill_(self.hparams.bias[i])
else:
self._net[-1].c.bias.data.fill_(self.hparams.bias)
@staticmethod
def _init_tbme2_net(n_inputs: int = 1, n_outputs: int = 1):
return nn.Sequential(
# Encoder
DownBlock(n_inputs, 32, 32, 3, stride=[1, 2], pool=None, push=False, layers=3),
DownBlock(32, 32, 32, 3, stride=[1, 2], pool=None, push=False, layers=3),
DownBlock(32, 32, 32, 3, stride=[1, 2], pool=None, push=False, layers=3),
DownBlock(32, 32, 32, 3, stride=[1, 2], pool=None, push=True, layers=3),
DownBlock(32, 32, 64, 3, stride=1, pool=[2, 2], push=True, layers=3),
DownBlock(64, 64, 128, 3, stride=1, pool=[2, 2], push=True, layers=3),
DownBlock(128, 128, 512, 3, stride=1, pool=[2, 2], push=False, layers=3),
# Decoder
UpBlock(512, 128, 3, scale_factor=2, pop=False, layers=3),
UpBlock(256, 64, 3, scale_factor=2, pop=True, layers=3),
UpBlock(128, 32, 3, scale_factor=2, pop=True, layers=3),
UpBlock(64, 32, 3, scale_factor=2, pop=True, layers=3),
UpStep(32, 32, 3, scale_factor=1),
Compress(32, n_outputs))
@staticmethod
def _init_embc_net(n_inputs: int = 1, n_outputs: int = 1):
return nn.Sequential(
# Encoder
DownBlock(n_inputs, 32, 32, 15, [1, 2], None, layers=1),
DownBlock(32, 32, 32, 13, [1, 2], None, layers=1),
DownBlock(32, 32, 32, 11, [1, 2], None, layers=1),
DownBlock(32, 32, 32, 9, [1, 2], None, True, layers=1),
DownBlock(32, 32, 64, 7, 1, [2, 2], True, layers=1),
DownBlock(64, 64, 128, 5, 1, [2, 2], True, layers=1),
DownBlock(128, 128, 512, 3, 1, [2, 2], layers=1),
# Decoder
UpBlock(512, 128, 5, 2, layers=1),
UpBlock(256, 64, 7, 2, True, layers=1),
UpBlock(128, 32, 9, 2, True, layers=1),
UpBlock(64, 32, 11, 2, True, layers=1),
UpStep(32, 32, 3, 1),
Compress(32, n_outputs))
@staticmethod
def _init_tbme_net(n_inputs: int = 1, n_outputs: int = 1):
return nn.Sequential(
# Encoder
DownBlock(n_inputs, 32, 32, 3, [1, 2], None, layers=1),
DownBlock(32, 32, 32, 3, [1, 2], None, layers=1),
DownBlock(32, 32, 32, 3, [1, 2], None, layers=1),
DownBlock(32, 32, 32, 3, [1, 2], None, True, layers=1),
DownBlock(32, 32, 64, 3, 1, [2, 2], True, layers=1),
DownBlock(64, 64, 128, 3, 1, [2, 2], True, layers=1),
DownBlock(128, 128, 512, 3, 1, [2, 2], layers=1),
# Decoder
UpBlock(512, 128, 3, 2, layers=1),
UpBlock(256, 64, 3, 2, True, layers=1),
UpBlock(128, 32, 3, 2, True, layers=1),
UpBlock(64, 32, 3, 2, True, layers=1),
UpStep(32, 32, 3, 1),
Compress(32, n_outputs))
@staticmethod
def add_model_specific_args(parent_parser=None):
parser = argparse.ArgumentParser(
prog="Net",
usage=Net.__doc__,
parents=[parent_parser] if parent_parser is not None else [],
add_help=False)
parser.add_argument("--random_mirror", type=int, nargs="?", default=1, help="Randomly mirror data to increase diversity when using flat plate wave")
parser.add_argument("--noise_std", type=float, nargs="*", help="range of std of random noise to add to the input signal [0 val] or [min max]")
parser.add_argument("--quantization", type=float, nargs="?", help="Quantization noise")
parser.add_argument("--rand_drop", type=int, nargs="*", help="Random drop lines, between 0 and value lines if single value, or between two values")
parser.add_argument("--normalize_net", type=float, default=0.0, help="Coefficient for normalizing network weights")
parser.add_argument("--learning_rate", type=float, default=5e-3, help="Learning rate to use for optimizer")
parser.add_argument("--lr_sched_step", type=int, default=15, help="Learning decay, update step size")
parser.add_argument("--lr_sched_gamma", type=float, default=0.65, help="Learning decay gamma")
parser.add_argument("--net_type", default="tbme2", help="The network to use [tbme2/embc/tbme]")
parser.add_argument("--bias", type=float, nargs="*", help="Set bias on last layer, set to 1500 when training from scratch on SoS output")
parser.add_argument("--decimation", type=int, help="Subsample phase signal")
parser.add_argument("--phase_inv", type=int, default=0, help="Use phase for inversion")
parser.add_argument("--center_freq", type=float, default=5e6, help="Matched filter and IQ demodulation frequency")
parser.add_argument("--n_periods", type=float, default=5, help="Matched filter length")
parser.add_argument("--matched_filter", type=int, nargs="?", default=0, help="Apply matched filter, set to 1 to run during forward pass, 2 to run during preprocessing phase (before adding noise)")
parser.add_argument("--rand_output_crop", type=int, help="Subsample phase signal")
parser.add_argument("--rand_scale", type=float, nargs="*", help="Random scaling range [min max] -- (10 ** rand_scale)")
parser.add_argument("--rand_gain", type=float, nargs="*", help="Random gain coefficient range [min max] -- (10 ** rand_gain)")
parser.add_argument("--n_inputs", type=int, default=1, help="Number of input layers")
parser.add_argument("--n_outputs", type=int, default=1, help="Number of output layers")
parser.add_argument("--scale_losses", type=float, nargs="*", help="Scale each layer of the loss function by given value")
return parser
def forward(self, x) -> torch.Tensor:
# Matched filter
if self.hparams.matched_filter == 1:
x = self._matched_filter(x)
# compute IQ phase if in phase_inv mode
if self.hparams.phase_inv:
x = self._phase(x)
# Decimation
if self.hparams.decimation != 1:
x = x[..., ::self.hparams.decimation]
# Apply network
x = self._net((x, []))
return x
def _matched_filter(self, x):
sampling_freq = 40e6
samples_per_cycle = sampling_freq / self.hparams.center_freq
n_samples = np.ceil(samples_per_cycle * self.hparams.n_periods + 1)
signal = torch.sin(torch.arange(n_samples, device=x.device) / samples_per_cycle * 2 * np.pi) * torch.from_numpy(gaussian(n_samples, (n_samples - 1) / 6).astype(np.single)).to(x.device)
return torch.nn.functional.conv1d(x.reshape(x.shape[:2] + (-1,)), signal.reshape(1, 1, -1), padding="same").reshape(x.shape)
def _phase(self, x):
f = self.hparams.center_freq
F = 40e6
N = x.shape[-1]
n = int(round(f * N / F))
X = torch.fft.fft(x, dim=-1)
X[..., (2 * n + 1):] = 0
X[..., :(2 * n + 1)] *= torch.from_numpy(gaussian(2 * n + 1, 2 * n / 6).astype(np.single)).to(x.device)
X = X.roll(-n, dims=-1)
x = torch.fft.ifft(X, dim=-1)
return x.angle()
def _preprocess(self, x):
# Matched filter
if self.hparams.matched_filter == 2:
x = self._matched_filter(x)
# Gaussian (normal) noise - random scaling, normalized to signal STD
if (ns := self.hparams.noise_std) and len(ns):
scl = ns[0] if len(ns) == 1 else torch.rand([x.shape[0]] + [1] * 3).to(x.device) * (ns[-1] - ns[-2]) + ns[-2]
scl *= x.std()
x += torch.empty_like(x).normal_() * scl
# Random multiplicative scaling
if (rs := self.hparams.rand_scale) and len(rs):
x *= 10 ** (torch.rand([x.shape[0]] + [1] * 3).to(x.device) * (rs[-1] - rs[-2]) + rs[-2])
# Random exponential gain
if (gs := self.hparams.rand_gain) and len(gs):
gain = torch.FloatTensor([10.0]).to(x.device) ** \
(torch.rand([x.shape[0]] + [1] * 3).to(x.device) * ((gs[-1] - gs[-2]) + gs[-2]) *
torch.linspace(0, 1, x.shape[-1]).to(x.device).view(1, 1, 1, -1))
x *= gain
# Quantization noise, to emulated ADC
if (quantization := self.hparams.quantization) is not None:
x = (x * quantization).round() * (1.0 / quantization)
# Randomly zero out some of the channels
if (rand_drop := self.hparams.rand_drop) and len(rand_drop):
if len(rand_drop) == 1:
rand_drop = [0, ] + rand_drop
for i in range(x.shape[0]):
lines = np.random.randint(0, x.shape[2], np.random.randint(rand_drop[0], rand_drop[1] + 1))
x[i, :, lines, :] = 0.
return x
def _log_losses(self, outputs: torch.Tensor, labels: torch.Tensor, prefix: str = ""):
diff = torch.abs(labels.detach() - outputs.detach())
s1 = int(diff.shape[-1] * (1.0 / 3.0))
s2 = int(diff.shape[-1] * (2.0 / 3.0))
for i in range(diff.shape[1]):
tag = f"{i}_" if diff.shape[1] > 1 else ""
losses = {
f"{prefix + tag}rmse": torch.sqrt(torch.mean(diff[:, i, ...] * diff[:, i, ...])).item(),
f"{prefix + tag}mean": torch.mean(diff[:, i, ...]).item(),
f"{prefix + tag}short": torch.mean(diff[:, i, :, :s1]).item(),
f"{prefix + tag}med": torch.mean(diff[:, i, :, s1:s2]).item(),
f"{prefix + tag}long": torch.mean(diff[:, i, :, s2:]).item()}
self.log_dict(losses, prog_bar=True)
def training_step(self, batch, batch_idx):
if self.hparams.random_mirror:
mirror = np.random.randint(0, 2, batch[0].shape[0])
for b in batch:
for i, m in enumerate(mirror):
if not m:
continue
b[i, ...] = b[i, :, range(b.shape[-2] - 1, -1, -1), :] # Pytorch does not handle negative steps
loss = self._common_step(batch, batch_idx, "train_")
if self.hparams.normalize_net:
for W in self.parameters():
loss += self.hparams.normalize_net * W.norm(2)
return loss
def validation_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, "validate_")
def test_step(self, batch, batch_idx):
return self._common_step(batch, batch_idx, "test_")
def predict_step(self, batch, batch_idx):
x = batch[0]
x = self._preprocess(x)
z = self(x)
if isinstance(z, tuple):
z = z[0]
return z
def _common_step(self, batch, batch_idx, prefix):
x, y = batch
if self.hparams.rand_output_crop:
crop = np.random.randint(0, self.hparams.rand_output_crop, batch[0].shape[0])
for i, c in enumerate(crop):
if not c:
continue
x[i, :, :-c, :] = x[i, :, c:, :].clone()
y[i, :, :-c*2, :] = \
y[i, :, c*2-1:-1, :].clone() if np.random.randint(2) else \
y[i, :, c*2:, :].clone()
x = x[..., :-self.hparams.rand_output_crop, :]
y = y[..., :-self.hparams.rand_output_crop*2, :]
x = self._preprocess(x)
z = self(x)
outputs = z[0] if isinstance(z, tuple) or isinstance(z, list) else z
self._log_losses(outputs, y, prefix)
if (self.hparams.scale_losses) and len(self.hparams.scale_losses):
s = torch.FloatTensor(self.hparams.scale_losses).to(y.device).view(1, -1, 1, 1)
loss = F.mse_loss(s * z, s * y)
else:
loss = F.mse_loss(y, outputs)
self.log(prefix + "loss", np.sqrt(loss.item()))
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, self.hparams.lr_sched_step, self.hparams.lr_sched_gamma)
return [optimizer], [scheduler]
class DownStep(nn.Module):
"""
Down scaling step in the encoder decoder network
"""
def __init__(self, in_channels: int, out_channels: int, kernel_size: tuple, stride: int = 1, pool: tuple = None) -> None:
"""Constructor
Arguments:
in_channels {int} -- Number of input channels for 2D convolution
out_channels {int} -- Number of output channels for 2D convolution
kernel_size {tuple} -- Convolution kernel size
Keyword Arguments:
stride {int} -- Stride of convolution, set to 1 to disable (default: {1})
pool {tuple} -- max pulling size, set to None to disable (default: {None})
"""
super(DownStep, self).__init__()
self.c = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=kernel_size // 2)
self.n = nn.BatchNorm2d(out_channels)
self.pool = pool
def forward(self, x: torch.tensor) -> torch.tensor:
"""Run the forward step
Arguments:
x {torch.tensor} -- input tensor
Returns:
torch.tensor -- output tensor
"""
x = self.c(x)
x = F.relu(x)
if self.pool is not None:
x = F.max_pool2d(x, self.pool)
x = self.n(x)
return x
class UpStep(nn.Module):
"""
Up scaling step in the encoder decoder network
"""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, scale_factor: int = 2) -> None:
"""Constructor
Arguments:
in_channels {int} -- Number of input channels for 2D convolution
out_channels {int} -- Number of output channels for 2D convolution
kernel_size {int} -- Convolution kernel size
Keyword Arguments:
scale_factor {int} -- Upsampling scaling factor (default: {2})
"""
super(UpStep, self).__init__()
self.c = nn.Conv2d(in_channels, out_channels, kernel_size, padding=kernel_size // 2)
self.n = nn.BatchNorm2d(out_channels)
self.scale_factor = scale_factor
def forward(self, x: torch.tensor) -> torch.tensor:
"""Run the forward step
Arguments:
x {torch.tensor} -- input tensor
Returns:
torch.tensor -- output tensor
"""
if isinstance(x, tuple):
x = x[0]
if self.scale_factor != 1:
x = F.interpolate(x, scale_factor=self.scale_factor)
x = self.c(x)
x = F.relu(x)
x = self.n(x)
return x
class Compress(nn.Module):
"""
Up scaling step in the encoder decoder network
"""
def __init__(self, in_channels: int, out_channels: int = 1, kernel_size: int = 1, scale_factor: int = 1) -> None:
"""Constructor
Arguments:
in_channels {int} -- [description]
Keyword Arguments:
out_channels {int} -- [description] (default: {1})
kernel_size {int} -- [description] (default: {1})
"""
super(Compress, self).__init__()
self.scale_factor = scale_factor
self.c = nn.Conv2d(in_channels, out_channels, kernel_size, padding=kernel_size // 2)
def forward(self, x: torch.tensor) -> torch.tensor:
"""Run the forward step
Arguments:
x {torch.tensor} -- input tensor
Returns:
torch.tensor -- output tensor
"""
if isinstance(x, tuple) or isinstance(x, list):
x = x[0]
x = self.c(x)
if self.scale_factor != 1:
x = F.interpolate(x, scale_factor=self.scale_factor)
return x
class DownBlock(nn.Module):
def __init__(
self,
in_chan: int, inter_chan: int, out_chan: int,
kernel_size: int = 3, stride: int = 1, pool: tuple = None,
push: bool = False,
layers: int = 3):
super().__init__()
self.s = []
for i in range(layers):
self.s.append(deepcopy(DownStep(
in_chan if i == 0 else inter_chan,
inter_chan if i < layers - 1 else out_chan,
kernel_size,
1 if i < layers - 1 else stride,
None if i < layers - 1 else pool)))
self.s = nn.Sequential(*self.s)
self.push = push
def forward(self, x: torch.tensor) -> torch.tensor:
i, s = x
i = self.s(i)
if self.push:
s.append(i)
return i, s
class UpBlock(nn.Module):
def __init__(
self,
in_chan: int, out_chan: int,
kernel_size: int, scale_factor: int = 2,
pop: bool = False,
layers: int = 3):
super().__init__()
self.s = []
for i in range(layers):
self.s.append(deepcopy(UpStep(
in_chan if i == 0 else out_chan,
out_chan,
kernel_size,
1 if i < layers - 1 else scale_factor)))
self.s = nn.Sequential(*self.s)
self.pop = pop
def forward(self, x: torch.tensor) -> torch.tensor:
i, s = x
if self.pop:
i = torch.cat((i, s.pop()), dim=1)
i = self.s(i)
return i, s
|