latticetower commited on
Commit
614232f
1 Parent(s): ac37587

add Lunar Lander model for HF rl course

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: MlpPolicy
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 212.24 +/- 67.84
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **MlpPolicy** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bc60629e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bc6062a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bc6062b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bc6062b90>", "_build": "<function ActorCriticPolicy._build at 0x7f9bc6062c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f9bc6062cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bc6062d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9bc6062dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bc6062e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bc6062ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bc6062f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9bc60a0f60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652125990.3748596, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA230j0f3Yy5rAidupeJMrNRcD054txBMwAAgD8AAIA/QAStPXvWq7oS5Y67ZolKNi0EhDqIBre1AACAPwAAgD8G9Ms+6/W2PRC+Pb0OG0A8eKWIPkq6ab0AAIA/AACAP5r8er0U1pS6Mf2hOUTUWTb/8B47hs+4uAAAgD8AAIA/AHnZvI8+broWAo660fCXtHt2T7pFBKE5AACAPwAAgD8m6O6+5w0CPyDICj7F4UG+cRuOvS3XwbwAAAAAAAAAAKYXYD6vIRA9BOMLO2s/Bjqme6M+U0ZnugAAgD8AAIA/pgCbPcM1dbjYkn66Iip0NOWIzLsgApg5AACAPwAAgD/NpAA+rXpKP4D5aD7Zg9e+ekMyPRX1SjwAAAAAAAAAAI0enT0UKJG6njQgOSYy1DNwodq6qEw4uAAAgD8AAIA/8wWSvVwfBDm2yPK6VxMRtuKIl7sc6g86AACAPwAAgD/m3Cs9SB7LPhbdUjwMA1++5iLfvP7M77sAAAAAAAAAAE3Dcz2F06257XBjO/poCrbZTWS78smEugAAgD8AAIA/JmeVPkpOPb3NZUa6JEAmOXUppr60E4g5AACAPwAAgD+ARUc+LBfoPELHKbtgN/a5GEGDPkBWfDoAAIA/AACAP7rPF76K6hc81rcyPc0T5DsYopC9kOBjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3h6EgHx5EECUhpRSlIwBbJRNBAGMAXSUR0CPjf+RYA80dX2UKGgGaAloD0MINZiG4SOKMUCUhpRSlGgVS/hoFkdAj5IWZRbbDnV9lChoBmgJaA9DCCmxa3u7JltAlIaUUpRoFU3oA2gWR0CPlXt1IRRNdX2UKGgGaAloD0MIqRH6mfoOYkCUhpRSlGgVTegDaBZHQI+YLt7a7Ep1fZQoaAZoCWgPQwgVPIVcKWpiQJSGlFKUaBVN6ANoFkdAj5lvwuuie3V9lChoBmgJaA9DCEnVdhN8s1tAlIaUUpRoFU3oA2gWR0CPneq4pc5bdX2UKGgGaAloD0MIBp/m5EVMYkCUhpRSlGgVTegDaBZHQI+gk29+PR11fZQoaAZoCWgPQwhPeXQjLOBJQJSGlFKUaBVN6ANoFkdAj7wFDfFaS3V9lChoBmgJaA9DCNY5BmQvHWBAlIaUUpRoFU3oA2gWR0CPyA9X9zfadX2UKGgGaAloD0MInMO12sNTZkCUhpRSlGgVTegDaBZHQI/RIiLVFx51fZQoaAZoCWgPQwip91RO+wVkQJSGlFKUaBVN6ANoFkdAj+EEGzKLbnV9lChoBmgJaA9DCGiSWFLu0WpAlIaUUpRoFU1eAmgWR0CP4uebutwKdX2UKGgGaAloD0MI5iDoaFUsXECUhpRSlGgVTegDaBZHQI/riPMjeKt1fZQoaAZoCWgPQwg66X3j61ViQJSGlFKUaBVN6ANoFkdAj/huymhufnV9lChoBmgJaA9DCBMsDmd+/VhAlIaUUpRoFU3oA2gWR0CP+Z5WzWwvdX2UKGgGaAloD0MIur4PBwnxX0CUhpRSlGgVTegDaBZHQJAAhFXq7iB1fZQoaAZoCWgPQwireCPzyBM/QJSGlFKUaBVNDgFoFkdAkAQ/CQ9zO3V9lChoBmgJaA9DCL+6KlCLqFdAlIaUUpRoFU3oA2gWR0CQbgz06HTJdX2UKGgGaAloD0MIp1g1CPNHYECUhpRSlGgVTegDaBZHQJBxHamGdqd1fZQoaAZoCWgPQwj/P06YMA9hQJSGlFKUaBVN6ANoFkdAkHLZRfnfVXV9lChoBmgJaA9DCDIge737GWFAlIaUUpRoFU3oA2gWR0CQdC7HyVfNdX2UKGgGaAloD0MI5QmEnWIUXkCUhpRSlGgVTegDaBZHQJB0xVaOgg51fZQoaAZoCWgPQwhw6ZjzjIxjQJSGlFKUaBVN6ANoFkdAkHbE/0NBnnV9lChoBmgJaA9DCPgb7bhhOGNAlIaUUpRoFU3oA2gWR0CQd/yRSxZ/dX2UKGgGaAloD0MIsW68OzImJkCUhpRSlGgVS9poFkdAkHrKUu+RHXV9lChoBmgJaA9DCEcgXtevRmBAlIaUUpRoFU3oA2gWR0CQg8JcPe54dX2UKGgGaAloD0MI4E237JD6ZkCUhpRSlGgVTVUBaBZHQJCHvvqkdmx1fZQoaAZoCWgPQwi0xwvpcKxiQJSGlFKUaBVN6ANoFkdAkIjmJm/WUnV9lChoBmgJaA9DCGg8EcR5U15AlIaUUpRoFU3oA2gWR0CQjOsrNGExdX2UKGgGaAloD0MI6Gor9heHY0CUhpRSlGgVTegDaBZHQJCU64iHIp91fZQoaAZoCWgPQwixGeCC7NxjQJSGlFKUaBVN6ANoFkdAkJkZAyEcsHV9lChoBmgJaA9DCOEmo8owV19AlIaUUpRoFU3oA2gWR0CQn48hLXcydX2UKGgGaAloD0MIEOhM2lTyX0CUhpRSlGgVTegDaBZHQJCgMkqtozx1fZQoaAZoCWgPQwjiHksfuh5jQJSGlFKUaBVN6ANoFkdAkKQrOE/SpnV9lChoBmgJaA9DCCr/Wl65HV5AlIaUUpRoFU3oA2gWR0CQqFLUTcqOdX2UKGgGaAloD0MIj+Gxn8VWNsCUhpRSlGgVTQIBaBZHQJCz35bhWHV1fZQoaAZoCWgPQwi6vDlcq9hfQJSGlFKUaBVN6ANoFkdAkLVXoPkJbHV9lChoBmgJaA9DCCLhe3+D5V9AlIaUUpRoFU3oA2gWR0CQt0e1KGtZdX2UKGgGaAloD0MIwARu3c1PYkCUhpRSlGgVTegDaBZHQJC5g5HVf/p1fZQoaAZoCWgPQwifd2NBYbJJQJSGlFKUaBVN6ANoFkdAkLwetKZlWnV9lChoBmgJaA9DCMAklSlmWWJAlIaUUpRoFU3oA2gWR0CQvZ1IRRMwdX2UKGgGaAloD0MIFeKReHmpYECUhpRSlGgVTegDaBZHQJDA+C2+fyx1fZQoaAZoCWgPQwgjERrBxvUdwJSGlFKUaBVL3GgWR0CQxzvd/J/5dX2UKGgGaAloD0MIIVhVL78ta0CUhpRSlGgVTTwBaBZHQJDJvSBshxJ1fZQoaAZoCWgPQwib6PNRRilgQJSGlFKUaBVN6ANoFkdAkMp8F2V3U3V9lChoBmgJaA9DCDj4wmSq/1hAlIaUUpRoFU3oA2gWR0CQzhcKgIyCdX2UKGgGaAloD0MI3SIw1reNZECUhpRSlGgVTegDaBZHQJDPFnyup0h1fZQoaAZoCWgPQwi2LjVCPzskQJSGlFKUaBVNTAFoFkdAkNBGXsw+MnV9lChoBmgJaA9DCPuxSX7E2mlAlIaUUpRoFU1LAWgWR0CQ0XCYkVvddX2UKGgGaAloD0MIvmn67AAhYUCUhpRSlGgVTegDaBZHQJDSFQN0/4Z1fZQoaAZoCWgPQwgA/ilVoixlQJSGlFKUaBVN6ANoFkdAkNf+lfqoqHV9lChoBmgJaA9DCBe5p6s78jRAlIaUUpRoFUvgaBZHQJDaL/cWTHN1fZQoaAZoCWgPQwg1Qj9Tr+5eQJSGlFKUaBVN6ANoFkdAkNtpq/M4cXV9lChoBmgJaA9DCMkAUMWNUyRAlIaUUpRoFUvnaBZHQJDfH/jsD4h1fZQoaAZoCWgPQwjO34RChOFkQJSGlFKUaBVN6ANoFkdAkOCED+zdDnV9lChoBmgJaA9DCKyt2F/2vmVAlIaUUpRoFU3oA2gWR0CQ5FsfJV81dX2UKGgGaAloD0MILpELzuDvH0CUhpRSlGgVS9FoFkdAkOS845tFa3V9lChoBmgJaA9DCBGpaRfThDVAlIaUUpRoFUu+aBZHQJDlwoDxLCh1fZQoaAZoCWgPQwh/orJhTWlnQJSGlFKUaBVN6ANoFkdAkOeN/axoqXV9lChoBmgJaA9DCJesinCTyTrAlIaUUpRoFUvNaBZHQJDnx1HOKO11fZQoaAZoCWgPQwi7KlCLQcpmQJSGlFKUaBVN9QFoFkdAkVAMniNsFnV9lChoBmgJaA9DCEuRfCWQdWNAlIaUUpRoFU3oA2gWR0CRUfPvrnkldX2UKGgGaAloD0MIe5+qQgPAW0CUhpRSlGgVTegDaBZHQJFUlt+Csfd1fZQoaAZoCWgPQwiDh2nf3Kc1QJSGlFKUaBVL3GgWR0CRXeNN8E3bdX2UKGgGaAloD0MIODC5UWQ1ZECUhpRSlGgVTegDaBZHQJFeH0NBnjB1fZQoaAZoCWgPQwihSPdzCsBdQJSGlFKUaBVN6ANoFkdAkWUpzLfUF3V9lChoBmgJaA9DCJQSglV1g2BAlIaUUpRoFU3oA2gWR0CRZ9zTWoWIdX2UKGgGaAloD0MIHEEqxQ6NYUCUhpRSlGgVTegDaBZHQJFopChN/ON1fZQoaAZoCWgPQwgIym37HgE2wJSGlFKUaBVLxGgWR0CRawTSsr/bdX2UKGgGaAloD0MIfo/665U2akCUhpRSlGgVTZQBaBZHQJFsOYsunMt1fZQoaAZoCWgPQwhHAaJgRiVhQJSGlFKUaBVN6ANoFkdAkW1XZ9NN8HV9lChoBmgJaA9DCPkRv2IN2VlAlIaUUpRoFU3oA2gWR0CRbpjT8YQ8dX2UKGgGaAloD0MICMvY0M0sQUCUhpRSlGgVS+9oFkdAkXOOtCAtnXV9lChoBmgJaA9DCBFTIonedWZAlIaUUpRoFU1JAWgWR0CRe7jGT9sKdX2UKGgGaAloD0MIdTqQ9VS3YUCUhpRSlGgVTegDaBZHQJF/DeVLSNR1fZQoaAZoCWgPQwhuGAXB46pgQJSGlFKUaBVN6ANoFkdAkYCgXyiEhHV9lChoBmgJaA9DCL1uERhrIWRAlIaUUpRoFU3oA2gWR0CRhMOVgQYldX2UKGgGaAloD0MI6bevA2d1YECUhpRSlGgVTegDaBZHQJGFLcWTHKh1fZQoaAZoCWgPQwgIAI49ey9gQJSGlFKUaBVN6ANoFkdAkYZG8qWkanV9lChoBmgJaA9DCJaX/E9+zmFAlIaUUpRoFU3oA2gWR0CRiCD8+A3DdX2UKGgGaAloD0MIeLgdGhbUXUCUhpRSlGgVTegDaBZHQJGIV/qgRK91fZQoaAZoCWgPQwiNDd3sD7QvwJSGlFKUaBVLzGgWR0CRjR8GcFyJdX2UKGgGaAloD0MI1QPmIdM3ZkCUhpRSlGgVTegDaBZHQJGT6HymQ8x1fZQoaAZoCWgPQwgDeXb5VjVpQJSGlFKUaBVNKQFoFkdAkZe+PBBRh3V9lChoBmgJaA9DCAzJycQtumxAlIaUUpRoFU08AWgWR0CRmmCfHxSYdX2UKGgGaAloD0MITb9EvPV0aUCUhpRSlGgVTfYCaBZHQJGcQqFyq+91fZQoaAZoCWgPQwjT25+Lhv9fQJSGlFKUaBVN6ANoFkdAkZ5boOhCdHV9lChoBmgJaA9DCDSitDd492BAlIaUUpRoFU3oA2gWR0CRqUZJTVDsdX2UKGgGaAloD0MI5J6u7lglZECUhpRSlGgVTegDaBZHQJGsAGD+R5l1fZQoaAZoCWgPQwjvqgfMQ4JkQJSGlFKUaBVN6ANoFkdAka6pMcp9Z3V9lChoBmgJaA9DCDKQZ5dvAmVAlIaUUpRoFU3oA2gWR0CRsA4y44IbdX2UKGgGaAloD0MIhLweTIppa0CUhpRSlGgVTT0BaBZHQJGz3GwRoRJ1fZQoaAZoCWgPQwgFxCRcyJJgQJSGlFKUaBVN6ANoFkdAkbVPXsgMdHV9lChoBmgJaA9DCMbCEDl9/TNAlIaUUpRoFUvIaBZHQJG3//Khcqx1fZQoaAZoCWgPQwh0llmE4o1kQJSGlFKUaBVN6ANoFkdAkbxQ2ETQFHV9lChoBmgJaA9DCFplprR+bWVAlIaUUpRoFU3oA2gWR0CRvuEE1VHXdX2UKGgGaAloD0MIYd14d2SuXUCUhpRSlGgVTegDaBZHQJHDcEOiFkB1fZQoaAZoCWgPQwiyD7IsmJtgQJSGlFKUaBVN6ANoFkdAkcae76Hj63V9lChoBmgJaA9DCI7KTdTSwmNAlIaUUpRoFU3oA2gWR0CRxtdeIEbHdX2UKGgGaAloD0MIPYBFfv2TYECUhpRSlGgVTegDaBZHQJHLhrP+n651ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-Lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:babcb0171890139cd4d9a80327cfe7a41f28c6d538f3fe875531a754cee78c47
3
+ size 144094
ppo-Lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-Lander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9bc60629e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9bc6062a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9bc6062b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9bc6062b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9bc6062c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9bc6062cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9bc6062d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9bc6062dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9bc6062e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9bc6062ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9bc6062f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9bc60a0f60>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652125990.3748596,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA230j0f3Yy5rAidupeJMrNRcD054txBMwAAgD8AAIA/QAStPXvWq7oS5Y67ZolKNi0EhDqIBre1AACAPwAAgD8G9Ms+6/W2PRC+Pb0OG0A8eKWIPkq6ab0AAIA/AACAP5r8er0U1pS6Mf2hOUTUWTb/8B47hs+4uAAAgD8AAIA/AHnZvI8+broWAo660fCXtHt2T7pFBKE5AACAPwAAgD8m6O6+5w0CPyDICj7F4UG+cRuOvS3XwbwAAAAAAAAAAKYXYD6vIRA9BOMLO2s/Bjqme6M+U0ZnugAAgD8AAIA/pgCbPcM1dbjYkn66Iip0NOWIzLsgApg5AACAPwAAgD/NpAA+rXpKP4D5aD7Zg9e+ekMyPRX1SjwAAAAAAAAAAI0enT0UKJG6njQgOSYy1DNwodq6qEw4uAAAgD8AAIA/8wWSvVwfBDm2yPK6VxMRtuKIl7sc6g86AACAPwAAgD/m3Cs9SB7LPhbdUjwMA1++5iLfvP7M77sAAAAAAAAAAE3Dcz2F06257XBjO/poCrbZTWS78smEugAAgD8AAIA/JmeVPkpOPb3NZUa6JEAmOXUppr60E4g5AACAPwAAgD+ARUc+LBfoPELHKbtgN/a5GEGDPkBWfDoAAIA/AACAP7rPF76K6hc81rcyPc0T5DsYopC9kOBjPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3h6EgHx5EECUhpRSlIwBbJRNBAGMAXSUR0CPjf+RYA80dX2UKGgGaAloD0MINZiG4SOKMUCUhpRSlGgVS/hoFkdAj5IWZRbbDnV9lChoBmgJaA9DCCmxa3u7JltAlIaUUpRoFU3oA2gWR0CPlXt1IRRNdX2UKGgGaAloD0MIqRH6mfoOYkCUhpRSlGgVTegDaBZHQI+YLt7a7Ep1fZQoaAZoCWgPQwgVPIVcKWpiQJSGlFKUaBVN6ANoFkdAj5lvwuuie3V9lChoBmgJaA9DCEnVdhN8s1tAlIaUUpRoFU3oA2gWR0CPneq4pc5bdX2UKGgGaAloD0MIBp/m5EVMYkCUhpRSlGgVTegDaBZHQI+gk29+PR11fZQoaAZoCWgPQwhPeXQjLOBJQJSGlFKUaBVN6ANoFkdAj7wFDfFaS3V9lChoBmgJaA9DCNY5BmQvHWBAlIaUUpRoFU3oA2gWR0CPyA9X9zfadX2UKGgGaAloD0MInMO12sNTZkCUhpRSlGgVTegDaBZHQI/RIiLVFx51fZQoaAZoCWgPQwip91RO+wVkQJSGlFKUaBVN6ANoFkdAj+EEGzKLbnV9lChoBmgJaA9DCGiSWFLu0WpAlIaUUpRoFU1eAmgWR0CP4uebutwKdX2UKGgGaAloD0MI5iDoaFUsXECUhpRSlGgVTegDaBZHQI/riPMjeKt1fZQoaAZoCWgPQwg66X3j61ViQJSGlFKUaBVN6ANoFkdAj/huymhufnV9lChoBmgJaA9DCBMsDmd+/VhAlIaUUpRoFU3oA2gWR0CP+Z5WzWwvdX2UKGgGaAloD0MIur4PBwnxX0CUhpRSlGgVTegDaBZHQJAAhFXq7iB1fZQoaAZoCWgPQwireCPzyBM/QJSGlFKUaBVNDgFoFkdAkAQ/CQ9zO3V9lChoBmgJaA9DCL+6KlCLqFdAlIaUUpRoFU3oA2gWR0CQbgz06HTJdX2UKGgGaAloD0MIp1g1CPNHYECUhpRSlGgVTegDaBZHQJBxHamGdqd1fZQoaAZoCWgPQwj/P06YMA9hQJSGlFKUaBVN6ANoFkdAkHLZRfnfVXV9lChoBmgJaA9DCDIge737GWFAlIaUUpRoFU3oA2gWR0CQdC7HyVfNdX2UKGgGaAloD0MI5QmEnWIUXkCUhpRSlGgVTegDaBZHQJB0xVaOgg51fZQoaAZoCWgPQwhw6ZjzjIxjQJSGlFKUaBVN6ANoFkdAkHbE/0NBnnV9lChoBmgJaA9DCPgb7bhhOGNAlIaUUpRoFU3oA2gWR0CQd/yRSxZ/dX2UKGgGaAloD0MIsW68OzImJkCUhpRSlGgVS9poFkdAkHrKUu+RHXV9lChoBmgJaA9DCEcgXtevRmBAlIaUUpRoFU3oA2gWR0CQg8JcPe54dX2UKGgGaAloD0MI4E237JD6ZkCUhpRSlGgVTVUBaBZHQJCHvvqkdmx1fZQoaAZoCWgPQwi0xwvpcKxiQJSGlFKUaBVN6ANoFkdAkIjmJm/WUnV9lChoBmgJaA9DCGg8EcR5U15AlIaUUpRoFU3oA2gWR0CQjOsrNGExdX2UKGgGaAloD0MI6Gor9heHY0CUhpRSlGgVTegDaBZHQJCU64iHIp91fZQoaAZoCWgPQwixGeCC7NxjQJSGlFKUaBVN6ANoFkdAkJkZAyEcsHV9lChoBmgJaA9DCOEmo8owV19AlIaUUpRoFU3oA2gWR0CQn48hLXcydX2UKGgGaAloD0MIEOhM2lTyX0CUhpRSlGgVTegDaBZHQJCgMkqtozx1fZQoaAZoCWgPQwjiHksfuh5jQJSGlFKUaBVN6ANoFkdAkKQrOE/SpnV9lChoBmgJaA9DCCr/Wl65HV5AlIaUUpRoFU3oA2gWR0CQqFLUTcqOdX2UKGgGaAloD0MIj+Gxn8VWNsCUhpRSlGgVTQIBaBZHQJCz35bhWHV1fZQoaAZoCWgPQwi6vDlcq9hfQJSGlFKUaBVN6ANoFkdAkLVXoPkJbHV9lChoBmgJaA9DCCLhe3+D5V9AlIaUUpRoFU3oA2gWR0CQt0e1KGtZdX2UKGgGaAloD0MIwARu3c1PYkCUhpRSlGgVTegDaBZHQJC5g5HVf/p1fZQoaAZoCWgPQwifd2NBYbJJQJSGlFKUaBVN6ANoFkdAkLwetKZlWnV9lChoBmgJaA9DCMAklSlmWWJAlIaUUpRoFU3oA2gWR0CQvZ1IRRMwdX2UKGgGaAloD0MIFeKReHmpYECUhpRSlGgVTegDaBZHQJDA+C2+fyx1fZQoaAZoCWgPQwgjERrBxvUdwJSGlFKUaBVL3GgWR0CQxzvd/J/5dX2UKGgGaAloD0MIIVhVL78ta0CUhpRSlGgVTTwBaBZHQJDJvSBshxJ1fZQoaAZoCWgPQwib6PNRRilgQJSGlFKUaBVN6ANoFkdAkMp8F2V3U3V9lChoBmgJaA9DCDj4wmSq/1hAlIaUUpRoFU3oA2gWR0CQzhcKgIyCdX2UKGgGaAloD0MI3SIw1reNZECUhpRSlGgVTegDaBZHQJDPFnyup0h1fZQoaAZoCWgPQwi2LjVCPzskQJSGlFKUaBVNTAFoFkdAkNBGXsw+MnV9lChoBmgJaA9DCPuxSX7E2mlAlIaUUpRoFU1LAWgWR0CQ0XCYkVvddX2UKGgGaAloD0MIvmn67AAhYUCUhpRSlGgVTegDaBZHQJDSFQN0/4Z1fZQoaAZoCWgPQwgA/ilVoixlQJSGlFKUaBVN6ANoFkdAkNf+lfqoqHV9lChoBmgJaA9DCBe5p6s78jRAlIaUUpRoFUvgaBZHQJDaL/cWTHN1fZQoaAZoCWgPQwg1Qj9Tr+5eQJSGlFKUaBVN6ANoFkdAkNtpq/M4cXV9lChoBmgJaA9DCMkAUMWNUyRAlIaUUpRoFUvnaBZHQJDfH/jsD4h1fZQoaAZoCWgPQwjO34RChOFkQJSGlFKUaBVN6ANoFkdAkOCED+zdDnV9lChoBmgJaA9DCKyt2F/2vmVAlIaUUpRoFU3oA2gWR0CQ5FsfJV81dX2UKGgGaAloD0MILpELzuDvH0CUhpRSlGgVS9FoFkdAkOS845tFa3V9lChoBmgJaA9DCBGpaRfThDVAlIaUUpRoFUu+aBZHQJDlwoDxLCh1fZQoaAZoCWgPQwh/orJhTWlnQJSGlFKUaBVN6ANoFkdAkOeN/axoqXV9lChoBmgJaA9DCJesinCTyTrAlIaUUpRoFUvNaBZHQJDnx1HOKO11fZQoaAZoCWgPQwi7KlCLQcpmQJSGlFKUaBVN9QFoFkdAkVAMniNsFnV9lChoBmgJaA9DCEuRfCWQdWNAlIaUUpRoFU3oA2gWR0CRUfPvrnkldX2UKGgGaAloD0MIe5+qQgPAW0CUhpRSlGgVTegDaBZHQJFUlt+Csfd1fZQoaAZoCWgPQwiDh2nf3Kc1QJSGlFKUaBVL3GgWR0CRXeNN8E3bdX2UKGgGaAloD0MIODC5UWQ1ZECUhpRSlGgVTegDaBZHQJFeH0NBnjB1fZQoaAZoCWgPQwihSPdzCsBdQJSGlFKUaBVN6ANoFkdAkWUpzLfUF3V9lChoBmgJaA9DCJQSglV1g2BAlIaUUpRoFU3oA2gWR0CRZ9zTWoWIdX2UKGgGaAloD0MIHEEqxQ6NYUCUhpRSlGgVTegDaBZHQJFopChN/ON1fZQoaAZoCWgPQwgIym37HgE2wJSGlFKUaBVLxGgWR0CRawTSsr/bdX2UKGgGaAloD0MIfo/665U2akCUhpRSlGgVTZQBaBZHQJFsOYsunMt1fZQoaAZoCWgPQwhHAaJgRiVhQJSGlFKUaBVN6ANoFkdAkW1XZ9NN8HV9lChoBmgJaA9DCPkRv2IN2VlAlIaUUpRoFU3oA2gWR0CRbpjT8YQ8dX2UKGgGaAloD0MICMvY0M0sQUCUhpRSlGgVS+9oFkdAkXOOtCAtnXV9lChoBmgJaA9DCBFTIonedWZAlIaUUpRoFU1JAWgWR0CRe7jGT9sKdX2UKGgGaAloD0MIdTqQ9VS3YUCUhpRSlGgVTegDaBZHQJF/DeVLSNR1fZQoaAZoCWgPQwhuGAXB46pgQJSGlFKUaBVN6ANoFkdAkYCgXyiEhHV9lChoBmgJaA9DCL1uERhrIWRAlIaUUpRoFU3oA2gWR0CRhMOVgQYldX2UKGgGaAloD0MI6bevA2d1YECUhpRSlGgVTegDaBZHQJGFLcWTHKh1fZQoaAZoCWgPQwgIAI49ey9gQJSGlFKUaBVN6ANoFkdAkYZG8qWkanV9lChoBmgJaA9DCJaX/E9+zmFAlIaUUpRoFU3oA2gWR0CRiCD8+A3DdX2UKGgGaAloD0MIeLgdGhbUXUCUhpRSlGgVTegDaBZHQJGIV/qgRK91fZQoaAZoCWgPQwiNDd3sD7QvwJSGlFKUaBVLzGgWR0CRjR8GcFyJdX2UKGgGaAloD0MI1QPmIdM3ZkCUhpRSlGgVTegDaBZHQJGT6HymQ8x1fZQoaAZoCWgPQwgDeXb5VjVpQJSGlFKUaBVNKQFoFkdAkZe+PBBRh3V9lChoBmgJaA9DCAzJycQtumxAlIaUUpRoFU08AWgWR0CRmmCfHxSYdX2UKGgGaAloD0MITb9EvPV0aUCUhpRSlGgVTfYCaBZHQJGcQqFyq+91fZQoaAZoCWgPQwjT25+Lhv9fQJSGlFKUaBVN6ANoFkdAkZ5boOhCdHV9lChoBmgJaA9DCDSitDd492BAlIaUUpRoFU3oA2gWR0CRqUZJTVDsdX2UKGgGaAloD0MI5J6u7lglZECUhpRSlGgVTegDaBZHQJGsAGD+R5l1fZQoaAZoCWgPQwjvqgfMQ4JkQJSGlFKUaBVN6ANoFkdAka6pMcp9Z3V9lChoBmgJaA9DCDKQZ5dvAmVAlIaUUpRoFU3oA2gWR0CRsA4y44IbdX2UKGgGaAloD0MIhLweTIppa0CUhpRSlGgVTT0BaBZHQJGz3GwRoRJ1fZQoaAZoCWgPQwgFxCRcyJJgQJSGlFKUaBVN6ANoFkdAkbVPXsgMdHV9lChoBmgJaA9DCMbCEDl9/TNAlIaUUpRoFUvIaBZHQJG3//Khcqx1fZQoaAZoCWgPQwh0llmE4o1kQJSGlFKUaBVN6ANoFkdAkbxQ2ETQFHV9lChoBmgJaA9DCFplprR+bWVAlIaUUpRoFU3oA2gWR0CRvuEE1VHXdX2UKGgGaAloD0MIYd14d2SuXUCUhpRSlGgVTegDaBZHQJHDcEOiFkB1fZQoaAZoCWgPQwiyD7IsmJtgQJSGlFKUaBVN6ANoFkdAkcae76Hj63V9lChoBmgJaA9DCI7KTdTSwmNAlIaUUpRoFU3oA2gWR0CRxtdeIEbHdX2UKGgGaAloD0MIPYBFfv2TYECUhpRSlGgVTegDaBZHQJHLhrP+n651ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-Lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a58d29cad34b46e709bbc88137d0b64dec366a3eafc63a777cac4fc016c0e55d
3
+ size 84893
ppo-Lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:514f38a6020832a5b95ed2a0009386feaea936f3974b5b8b66e883c94d3d5da8
3
+ size 43201
ppo-Lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79b279bdc57f2f7cdc9b7b638b88ee8638fc537774fe32d77abab9771f8479c7
3
+ size 223116
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 212.23917720624485, "std_reward": 67.836917149985, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T20:10:45.786025"}