--- language: - ur license: apache-2.0 base_model: openai/whisper-large-v2 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_14_0 metrics: - wer model-index: - name: Whisper Large Ur results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 14.0 type: mozilla-foundation/common_voice_14_0 config: ur split: test args: ur metrics: - name: Wer type: wer value: 32.20306217135787 --- # Whisper Large Ur This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5723 - Wer: 32.2031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0147 | 9.06 | 1000 | 0.5723 | 32.2031 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0