File size: 2,090 Bytes
d4cab18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: mit
base_model: xlnet/xlnet-base-cased
tags:
- generated_from_keras_callback
model-index:
- name: lamia6001/xlnet-base
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lamia6001/xlnet-base
This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co./xlnet/xlnet-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6647
- Train Accuracy: 0.9205
- Validation Loss: 0.2528
- Validation Accuracy: 0.9205
- Train Precision: 0.9226
- Train Recall: 0.9205
- Train F1: 0.9200
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.6647 | 0.9205 | 0.2528 | 0.9205 | 0.9226 | 0.9205 | 0.9200 | 0 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|