--- library_name: transformers datasets: - laicsiifes/flickr30k-pt-br language: - pt metrics: - bleu - rouge - meteor - bertscore base_model: - pierreguillou/gpt2-small-portuguese pipeline_tag: image-to-text model-index: - name: Swin-GPorTuguese-2 results: - task: name: Image Captioning type: image-to-text dataset: name: Flickr30K type: laicsiifes/flickr30k-pt-br split: test metrics: - name: CIDEr-D type: cider value: 64.71 - name: BLEU@4 type: bleu value: 23.15 - name: ROUGE-L type: rouge value: 39.39 - name: METEOR type: meteor value: 44.36 - name: BERTScore type: bertscore value: 71.70 --- # 🎉 Swin-GPorTuguese-2 for Brazilian Portuguese Image Captioning Swin-GPorTuguese-2 model trained for image captioning on [Flickr30K Portuguese](https://huggingface.co./datasets/laicsiifes/flickr30k-pt-br) (translated version using Google Translator API) at resolution 224x224 and max sequence length of 1024 tokens. ## 🤖 Model Description The Swin-GPorTuguese-2 is a type of Vision Encoder Decoder which leverage the checkpoints of the [Swin Transformer](https://huggingface.co./microsoft/swin-base-patch4-window7-224) as encoder and the checkpoints of the [GPorTuguese-2](https://huggingface.co./pierreguillou/gpt2-small-portuguese) as decoder. The encoder checkpoints come from Swin Trasnformer version pre-trained on ImageNet-1k at resolution 224x224. The code used for training and evaluation is available at: https://github.com/laicsiifes/ved-transformer-caption-ptbr. In this work, Swin-GPorTuguese-2 was trained together with its buddy [Swin-DistilBERTimbau](https://huggingface.co./laicsiifes/swin-distilbert-flickr30k-pt-br). Other models evaluated did not perform as well as Swin-DistilBERTimbau and Swin-GPorTuguese-2, namely: DeiT-BERTimbau, DeiT-DistilBERTimbau, DeiT-GPorTuguese-2, Swin-BERTimbau, ViT-BERTimbau, ViT-DistilBERTimbau and ViT-GPorTuguese-2. ## 🧑‍💻 How to Get Started with the Model Use the code below to get started with the model. ```python import requests from PIL import Image from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel # load a fine-tuned image captioning model and corresponding tokenizer and image processor model = VisionEncoderDecoderModel.from_pretrained("laicsiifes/swin-gportuguese-2") tokenizer = AutoTokenizer.from_pretrained("laicsiifes/swin-gportuguese-2") image_processor = AutoImageProcessor.from_pretrained("laicsiifes/swin-gportuguese-2") # preprocess an image url = "http://images.cocodataset.org/val2014/COCO_val2014_000000458153.jpg" image = Image.open(requests.get(url, stream=True).raw) pixel_values = image_processor(image, return_tensors="pt").pixel_values # generate caption generated_ids = model.generate(pixel_values) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ```python import matplotlib.pyplot as plt # plot image with caption plt.imshow(image) plt.axis("off") plt.title(generated_text) plt.show() ``` ![image/png](example.png) ## 📈 Results The evaluation metrics CIDEr-D, BLEU@4, ROUGE-L, METEOR and BERTScore (using [BERTimbau](https://huggingface.co./neuralmind/bert-base-portuguese-cased)) are abbreviated as C, B@4, RL, M and BS, respectively. |Model|Dataset|Eval. Split|C|B@4|RL|M|BS| |:---:|:------:|:--------:|:-----:|:----:|:-----:|:----:|:-------:| |Swin-DistilBERTimbau|Flickr30K Portuguese|test|66.73|24.65|39.98|44.71|72.30| |Swin-GPorTuguese-2|Flickr30K Portuguese|test|64.71|23.15|39.39|44.36|71.70| ## 📋 BibTeX entry and citation info ```bibtex @inproceedings{bromonschenkel2024comparative, title={A Comparative Evaluation of Transformer-Based Vision Encoder-Decoder Models for Brazilian Portuguese Image Captioning}, author={Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and Paix{\~a}o, Thiago M}, booktitle={2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)}, pages={1--6}, year={2024}, organization={IEEE} } ```