File size: 4,283 Bytes
20244ad ef23f28 1331d36 39796e1 8d82224 1331d36 f748adb 1331d36 2ef419a 1331d36 2ef419a 1331d36 2ef419a 1331d36 2ef419a 1331d36 2ef419a 20244ad 83a35d1 20244ad 83a35d1 bd54ed3 20244ad bd54ed3 20244ad 83a35d1 4ca27c2 bd54ed3 20244ad 83a35d1 bd54ed3 20244ad 83a35d1 bd54ed3 20244ad bd54ed3 e41e34f bd54ed3 6ba0193 bd54ed3 fd2f9bd 9d388f2 bd54ed3 20244ad fd2f9bd 9d388f2 fd2f9bd bd54ed3 20244ad ea62ef6 20244ad cfa3d89 038f2c2 cfa3d89 20244ad bd54ed3 20244ad bd54ed3 b1ed24e 86c05b2 9904890 86c05b2 bd54ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
library_name: transformers
datasets:
- laicsiifes/flickr30k-pt-br
language:
- pt
metrics:
- bleu
- rouge
- meteor
- bertscore
base_model: laicsiifes/swin-gportuguese-2
pipeline_tag: image-to-text
model-index:
- name: Swin-GPorTuguese-2
results:
- task:
name: Image Captioning
type: image-to-text
dataset:
name: laicsiifes/flickr30k-pt-br
type: flickr30k-pt-br
split: test
metrics:
- name: Cider-D
type: cider
value: 64.71
- name: BLEU@4
type: bleu
value: 23.15
- name: ROUGE-L
type: rouge
value: 39.39
- name: METEOR
type: meteor
value: 44.36
- name: BERTScore
type: bertscore
value: 71.70
---
# 🎉 Swin-GPorTuguese-2 for Brazilian Portuguese Image Captioning
Swin-GPorTuguese-2 model trained for image captioning on [Flickr30K Portuguese](https://huggingface.co./datasets/laicsiifes/flickr30k-pt-br) (translated version using Google Translator API)
at resolution 224x224 and max sequence length of 1024 tokens.
## 🤖 Model Description
The Swin-GPorTuguese-2 is a type of Vision Encoder Decoder which leverage the checkpoints of the [Swin Transformer](https://huggingface.co./microsoft/swin-base-patch4-window7-224)
as encoder and the checkpoints of the [GPorTuguese-2](https://huggingface.co./pierreguillou/gpt2-small-portuguese) as decoder.
The encoder checkpoints come from Swin Trasnformer version pre-trained on ImageNet-1k at resolution 224x224.
The code used for training and evaluation is available at: https://github.com/laicsiifes/ved-transformer-caption-ptbr. In this work, Swin-GPorTuguese-2
was trained together with its buddy [Swin-DistilBERTimbau](https://huggingface.co./laicsiifes/swin-distilbert-flickr30k-pt-br).
Other models evaluated didn't achieve performance as high as Swin-DistilBERTimbau and Swin-GPorTuguese-2, namely: DeiT-BERTimbau,
DeiT-DistilBERTimbau, DeiT-GPorTuguese-2, Swin-BERTimbau, ViT-BERTimbau, ViT-DistilBERTimbau and ViT-GPorTuguese-2.
## 🧑💻 How to Get Started with the Model
Use the code below to get started with the model.
```python
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
# load a fine-tuned image captioning model and corresponding tokenizer and image processor
model = VisionEncoderDecoderModel.from_pretrained("laicsiifes/swin-gportuguese-2")
tokenizer = AutoTokenizer.from_pretrained("laicsiifes/swin-gportuguese-2")
image_processor = AutoImageProcessor.from_pretrained("laicsiifes/swin-gportuguese-2")
# preprocess an image
url = "http://images.cocodataset.org/val2014/COCO_val2014_000000458153.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
# generate caption
generated_ids = model.generate(pixel_values)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
```python
import matplotlib.pyplot as plt
# plot image with caption
plt.imshow(image)
plt.axis("off")
plt.title(generated_text)
plt.show()
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/637a149c0dbdecf0b5bd6490/ih9NZRoAWfPXx2vXDgeSV.png)
## 📈 Results
The evaluation metrics Cider-D, BLEU@4, ROUGE-L, METEOR and BERTScore
(using [BERTimbau](https://huggingface.co./neuralmind/bert-base-portuguese-cased)) are abbreviated as C, B@4, RL, M and BS, respectively.
|Model|Dataset|Eval. Split|C|B@4|RL|M|BS|
|:---:|:------:|:--------:|:-----:|:----:|:-----:|:----:|:-------:|
|Swin-DistilBERTimbau|Flickr30K Portuguese|test|66.73|24.65|39.98|44.71|72.30|
|Swin-GPorTuguese-2|Flickr30K Portuguese|test|64.71|23.15|39.39|44.36|71.70|
## 📋 BibTeX entry and citation info
```bibtex
@inproceedings{bromonschenkel2024comparative,
title = "A Comparative Evaluation of Transformer-Based Vision
Encoder-Decoder Models for Brazilian Portuguese Image Captioning",
author = "Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and
Paix{\~a}o, Thiago M.",
booktitle = "Proceedings...",
organization = "Conference on Graphics, Patterns and Images, 37. (SIBGRAPI)",
year = "2024"
}
``` |