File size: 3,479 Bytes
20244ad ef23f28 bf25f40 39796e1 20244ad 83a35d1 20244ad 83a35d1 bd54ed3 20244ad bd54ed3 20244ad 83a35d1 4ca27c2 bd54ed3 20244ad 83a35d1 bd54ed3 20244ad 83a35d1 bd54ed3 20244ad bd54ed3 e41e34f bd54ed3 6ba0193 bd54ed3 20244ad bd54ed3 20244ad bd54ed3 20244ad bd54ed3 038f2c2 bd54ed3 83a35d1 20244ad bd54ed3 20244ad bd54ed3 b1ed24e 86c05b2 bd54ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
datasets:
- laicsiifes/flickr30k-pt-br
language:
- pt
metrics:
- bleu
- rouge
- meteor
- bertscore
base_model: laicsiifes/swin-gpt2-flickr30k-pt-br
pipeline_tag: image-to-text
---
# 🎉 Swin-GPorTuguese-2 for Brazilian Portuguese Image Captioning
Swin-GPorTuguese-2 model trained for image captioning on [Flickr30K Portuguese](https://huggingface.co./datasets/laicsiifes/flickr30k-pt-br) (translated version using Google Translator API)
at resolution 224x224 and max sequence length of 1024 tokens.
## 🤖 Model Description
The Swin-GPorTuguese-2 is a type of Vision Encoder Decoder which leverage the checkpoints of the [Swin Transformer](https://huggingface.co./microsoft/swin-base-patch4-window7-224)
as encoder and the checkpoints of the [GPorTuguese-2](https://huggingface.co./pierreguillou/gpt2-small-portuguese) as decoder.
The encoder checkpoints come from Swin Trasnformer version pre-trained on ImageNet-1k at resolution 224x224.
The code used for training and evaluation is available at: https://github.com/laicsiifes/ved-transformer-caption-ptbr. In this work, Swin-GPorTuguese-2
was trained together with its buddy [Swin-DistilBERTimbau](https://huggingface.co./laicsiifes/swin-distilbert-flickr30k-pt-br).
Other models evaluated didn't achieve performance as high as Swin-DistilBERTimbau and Swin-GPorTuguese-2, namely: DeiT-BERTimbau,
DeiT-DistilBERTimbau, DeiT-GPorTuguese-2, Swin-BERTimbau, ViT-BERTimbau, ViT-DistilBERTimbau and ViT-GPorTuguese-2.
## 🧑💻 How to Get Started with the Model
Use the code below to get started with the model.
```python
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
# load a fine-tuned image captioning model and corresponding tokenizer and image processor
model = VisionEncoderDecoderModel.from_pretrained("laicsiifes/swin-gportuguese-2")
tokenizer = AutoTokenizer.from_pretrained("laicsiifes/swin-gportuguese-2")
image_processor = AutoImageProcessor.from_pretrained("laicsiifes/swin-gportuguese-2")
# perform inference on an image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
pixel_values = image_processor(image, return_tensors="pt").pixel_values
# generate caption
generated_ids = model.generate(pixel_values)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)
```
## 📈 Results
The evaluation metrics Cider-D, BLEU@4, ROUGE-L, METEOR and BERTScore are abbreviated as C, B@4, RL, M and BS, respectively.
|Model|Training|Evaluation|C|B@4|RL|M|BS|
|:---:|:------:|:--------:|:-----:|:----:|:-----:|:----:|:-------:|
|Swin-DistilBERTimbau|Flickr30K Portuguese|Flickr30K Portuguese|66.73|24.65|39.98|44.71|72.30|
|Swin-GPorTuguese-2|Flickr30K Portuguese|Flickr30K Portuguese|64.71|23.15|39.39|44.36|71.70|
## 📋 BibTeX entry and citation info
```bibtex
@inproceedings{bromonschenkel2024comparative,
title = "A Comparative Evaluation of Transformer-Based Vision
Encoder-Decoder Models for Brazilian Portuguese Image Captioning",
author = "Bromonschenkel, Gabriel and Oliveira, Hil{\'a}rio and
Paix{\~a}o, Thiago M.",
booktitle = "Proceedings...",
organization = "Conference on Graphics, Patterns and Images, 37. (SIBGRAPI)",
year = "2024",
}
``` |