File size: 7,102 Bytes
8fbb6ae 4668b79 8fbb6ae 4668b79 f89eb37 8fbb6ae 4668b79 8fbb6ae 7a773d1 4668b79 8fbb6ae 3b9239c 7a773d1 3b9239c c3935b3 3b9239c c3935b3 3b9239c 7a773d1 8fbb6ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: cc-by-4.0
language: gu
widget:
- source_sentence: "એક માણસ દોરડા પર ચઢી રહ્યો છે"
sentences:
- "એક માણસ દોરડા પર ચઢે છે"
- "એક માણસ દિવાલ પર ચઢી રહ્યો છે"
- "એક માણસ વાંસળી વગાડી રહ્યો છે"
example_title: "Example 1"
- source_sentence: "કેટલાક લોકો ગાતા હોય છે"
sentences:
- "લોકોનું એક જૂથ ગાય છે"
- "એક બિલાડી દૂધ પી રહી છે"
- "બે માણસો લડી રહ્યા છે"
example_title: "Example 2"
- source_sentence: "હું પહેલીવાર વિમાનમાં બેઠો"
sentences:
- "તે મારી પ્રથમ વિમાનની મુસાફરી હતી"
- "હું પહેલીવાર ટ્રેનમાં બેઠો"
- "મને નવી જગ્યાઓ પર ફરવાનું પસંદ છે"
example_title: "Example 3"
---
# GujaratiSBERT
This is a GujaratiBERT model (l3cube-pune/gujarati-bert) trained on the NLI dataset. <br>
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
A multilingual version of this model supporting major Indic languages and cross-lingual capabilities is shared here <a href='https://huggingface.co./l3cube-pune/indic-sentence-bert-nli'> indic-sentence-bert-nli </a> <br>
A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co./l3cube-pune/gujarati-sentence-similarity-sbert <br>
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434)
```
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
```
```
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
```
<a href='https://arxiv.org/abs/2211.11187'> monolingual Indic SBERT paper </a> <br>
<a href='https://arxiv.org/abs/2304.11434'> multilingual Indic SBERT paper </a>
Other Monolingual Indic sentence BERT models are listed below: <br>
<a href='https://huggingface.co./l3cube-pune/marathi-sentence-bert-nli'> Marathi SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/hindi-sentence-bert-nli'> Hindi SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/kannada-sentence-bert-nli'> Kannada SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/telugu-sentence-bert-nli'> Telugu SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/malayalam-sentence-bert-nli'> Malayalam SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/tamil-sentence-bert-nli'> Tamil SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/gujarati-sentence-bert-nli'> Gujarati SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/odia-sentence-bert-nli'> Oriya SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/bengali-sentence-bert-nli'> Bengali SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/punjabi-sentence-bert-nli'> Punjabi SBERT</a> <br>
<a href='https://huggingface.co./l3cube-pune/indic-sentence-bert-nli'> Indic SBERT (multilingual)</a> <br>
Other Monolingual similarity models are listed below: <br>
<a href='https://huggingface.co./l3cube-pune/marathi-sentence-similarity-sbert'> Marathi Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/hindi-sentence-similarity-sbert'> Hindi Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/kannada-sentence-similarity-sbert'> Kannada Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/telugu-sentence-similarity-sbert'> Telugu Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/malayalam-sentence-similarity-sbert'> Malayalam Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/tamil-sentence-similarity-sbert'> Tamil Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/gujarati-sentence-similarity-sbert'> Gujarati Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/odia-sentence-similarity-sbert'> Oriya Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/bengali-sentence-similarity-sbert'> Bengali Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/punjabi-sentence-similarity-sbert'> Punjabi Similarity </a> <br>
<a href='https://huggingface.co./l3cube-pune/indic-sentence-similarity-sbert'> Indic Similarity (multilingual)</a> <br>
```
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
|