push again LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 254.39 +/- 24.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f38d5412280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f38d5412310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f38d54123a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f38d5412430>", "_build": "<function ActorCriticPolicy._build at 0x7f38d54124c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f38d5412550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f38d54125e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f38d5412670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f38d5412700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f38d5412790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f38d5412820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f38d540e480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671531733824069583, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAP3wa75HgR4/WvQ5PRoDhL4Sl9u9SyJNPQAAAAAAAAAA2vTPvQ+Ekj9XEZS+VV7gvrFpI767tSG9AAAAAAAAAAAtbpm+mD9ZP86gAj60cYK+KFkTvs5VAD4AAAAAAAAAADM7kbyyFTQ+rcz/vKYcTb7J8jc8uog1PQAAAAAAAAAAMz4qvVxjYLpSGzO7q2FRObyXirrW3ry4AACAPwAAgD/aAsI9qEvYPp4mML5rJJW+CNqSvO5yNz0AAAAAAAAAAEBogL0v85g/phllvTt1wr65mdK8auD4vAAAAAAAAAAAzQwxvHy/oz8wjX69Fljwvp3NlTpKXlm9AAAAAAAAAACznzC9XdgwP4pPsjwqrcG+N7wtPLgmOj0AAAAAAAAAAHpwhr5ZeIM/YC5avvV5tb464JO+alwtPgAAAAAAAAAATX0zPa6hjbp/rUC0vDS0rzI9s7rvxpkzAACAPwAAgD+AADq9cXBIu+YgwbuRyI487LOFPMOddb0AAIA/AACAP4AXcj1XIHU/toqDPSOP0L4dMRg9xWgYvQAAAAAAAAAAs8JZvjW5fT766Ug+q/1/vv16Ab2axuc8AAAAAAAAAAAzbYo9jy4SusZOxTQaxPkueyILOh+dtLMAAAAAAACAPya9nj2IqJ0/pSzUPoFuBb8vyrg90ouIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI98d71YoAckCUhpRSlIwBbJRNKgGMAXSUR0CW0i0Jng5zdX2UKGgGaAloD0MIgAuyZTkIckCUhpRSlGgVTTYBaBZHQJbSVM9KVY91fZQoaAZoCWgPQwhjC0EOytlwQJSGlFKUaBVNCwFoFkdAltJUTQE6k3V9lChoBmgJaA9DCPerAN+t+XBAlIaUUpRoFU1rA2gWR0CW1J2c8TzvdX2UKGgGaAloD0MIs7eU8wUucUCUhpRSlGgVTRgBaBZHQJbUpqVQhwF1fZQoaAZoCWgPQwjLS/4n/31xQJSGlFKUaBVNRgFoFkdAltWD8pCrtHV9lChoBmgJaA9DCJGBPLt8RG9AlIaUUpRoFU0kAWgWR0CW1py5I6KcdX2UKGgGaAloD0MI/kY7bri4cUCUhpRSlGgVTToBaBZHQJbW1LM9r451fZQoaAZoCWgPQwhr9GqAUsxyQJSGlFKUaBVNEgFoFkdAltcqN2ki2XV9lChoBmgJaA9DCPlM9s9TAHBAlIaUUpRoFU0bAWgWR0CW12PYnOSodX2UKGgGaAloD0MIqI/AH/4YbkCUhpRSlGgVTRoBaBZHQJbXrtv4ubt1fZQoaAZoCWgPQwgmNbQBmIxxQJSGlFKUaBVNLAFoFkdAltgO3QUpNXV9lChoBmgJaA9DCBo2yvqNvXFAlIaUUpRoFU0fAWgWR0CW2DM8YAKfdX2UKGgGaAloD0MITDRIwdNFcECUhpRSlGgVTUEBaBZHQJbamMglnh91fZQoaAZoCWgPQwi5N79hottsQJSGlFKUaBVNIAFoFkdAltqpng5zYHV9lChoBmgJaA9DCG6LMhskg3JAlIaUUpRoFU1OAWgWR0CW20P1tfoidX2UKGgGaAloD0MIr1sExvqLbECUhpRSlGgVTU0BaBZHQJbcIzJp35h1fZQoaAZoCWgPQwhnCwitR/5wQJSGlFKUaBVNAQFoFkdAltx2T9sJpnV9lChoBmgJaA9DCFOVtrjGAUZAlIaUUpRoFUu7aBZHQJbdFQ+EAYJ1fZQoaAZoCWgPQwho6nWLANJxQJSGlFKUaBVNIAFoFkdAlt5ffXPJJXV9lChoBmgJaA9DCHukwW1txHBAlIaUUpRoFU2pAWgWR0CW3ubeMyaedX2UKGgGaAloD0MIlIjwLwL+cECUhpRSlGgVTeQBaBZHQJbfeGpMpPR1fZQoaAZoCWgPQwi9baZCvBVvQJSGlFKUaBVNLwFoFkdAluCnwsoUjHV9lChoBmgJaA9DCMLCSZq/yHBAlIaUUpRoFU0OAWgWR0CW4Lk3juKGdX2UKGgGaAloD0MIieqtga0ecECUhpRSlGgVTUIBaBZHQJbg7ENvwVl1fZQoaAZoCWgPQwiTxJJyt1NwQJSGlFKUaBVNUAFoFkdAluElwLmZE3V9lChoBmgJaA9DCHmSdM3kdnFAlIaUUpRoFU0vAWgWR0CW4YlXRw6ydX2UKGgGaAloD0MIdzHNdC+acECUhpRSlGgVTVwBaBZHQJbiY9q1w5x1fZQoaAZoCWgPQwjG4GHaN1lSQJSGlFKUaBVLu2gWR0CW4uCNS619dX2UKGgGaAloD0MIrtf0oCB9cUCUhpRSlGgVTdgBaBZHQJbjIVM23rl1fZQoaAZoCWgPQwhhp1g1CGhyQJSGlFKUaBVNGgFoFkdAluNZFkQPJHV9lChoBmgJaA9DCPbSFAEObHBAlIaUUpRoFU0BAWgWR0CW4+4xDb8FdX2UKGgGaAloD0MIxJYeTXXUcUCUhpRSlGgVTSEBaBZHQJbkFSBK+SN1fZQoaAZoCWgPQwhiEFg5tDRwQJSGlFKUaBVNUAFoFkdAluTEaMrEtXV9lChoBmgJaA9DCAznGmZoskNAlIaUUpRoFUvNaBZHQJbmWKZUkv91fZQoaAZoCWgPQwj9aaM6HRBTQJSGlFKUaBVL42gWR0CW6DQkona4dX2UKGgGaAloD0MIqtIW13gbcUCUhpRSlGgVTUIBaBZHQJboqtFKCg91fZQoaAZoCWgPQwg0vFmDN7JxQJSGlFKUaBVNCAFoFkdAlujFOj7AL3V9lChoBmgJaA9DCNJWJZG9O3FAlIaUUpRoFU0QAWgWR0CW6NrJKaoddX2UKGgGaAloD0MIFcrC11c2bECUhpRSlGgVTTUBaBZHQJbo2eYlY2d1fZQoaAZoCWgPQwjvxoLCIMFwQJSGlFKUaBVNnQFoFkdAluksLncL0HV9lChoBmgJaA9DCISB595D529AlIaUUpRoFU0RAWgWR0CW6qJ0nw5OdX2UKGgGaAloD0MIMPSI0bM/ckCUhpRSlGgVTQ0BaBZHQJbrTZpSJj51fZQoaAZoCWgPQwhEFJM3gMNxQJSGlFKUaBVNYgFoFkdAluu0wFkhBHV9lChoBmgJaA9DCJHSbB4HunJAlIaUUpRoFU0TAWgWR0CW67x+8XendX2UKGgGaAloD0MITYI3pBEHcUCUhpRSlGgVTSoBaBZHQJbr6df9gnd1fZQoaAZoCWgPQwgd5PVgErlwQJSGlFKUaBVN/wFoFkdAlwDeRLbpNnV9lChoBmgJaA9DCIVbPpLSf3BAlIaUUpRoFU1GAWgWR0CXAQ9uxbB5dX2UKGgGaAloD0MIqmVrfZGqSUCUhpRSlGgVS7VoFkdAlwFAOavzOHV9lChoBmgJaA9DCNKMRdNZYm5AlIaUUpRoFU01AWgWR0CXAWFev6j4dX2UKGgGaAloD0MI1ljC2hhZU0CUhpRSlGgVS9JoFkdAlwH1GoaUA3V9lChoBmgJaA9DCLn+XZ+5KHNAlIaUUpRoFU0oAWgWR0CXAnl8gIQfdX2UKGgGaAloD0MIETRmEvUqckCUhpRSlGgVS/toFkdAlwKnUDuBtnV9lChoBmgJaA9DCMBZSpYT425AlIaUUpRoFU0GAWgWR0CXA7Jng5zYdX2UKGgGaAloD0MIWKoLeFkccECUhpRSlGgVTSIBaBZHQJcED/T9bX91fZQoaAZoCWgPQwiPOGQDacZwQJSGlFKUaBVNKQFoFkdAlwRgyEcsDnV9lChoBmgJaA9DCB5uh4YFuHBAlIaUUpRoFUv/aBZHQJcE6jTKDCh1fZQoaAZoCWgPQwgn+RG/IidwQJSGlFKUaBVNJQFoFkdAlwa8zqKP4nV9lChoBmgJaA9DCD83NGXnZHBAlIaUUpRoFU0/AWgWR0CXCCu2Zy+6dX2UKGgGaAloD0MIMX4a9+ZvbECUhpRSlGgVTT0BaBZHQJcIUQtjCpF1fZQoaAZoCWgPQwhv1ArTty1wQJSGlFKUaBVNDQFoFkdAlwkt1+y7gHV9lChoBmgJaA9DCNy3Wicu30lAlIaUUpRoFUvjaBZHQJcJxO9FnZl1fZQoaAZoCWgPQwi5GAPruD1wQJSGlFKUaBVNKAFoFkdAlwnqI3zcynV9lChoBmgJaA9DCGyzsRIzJHFAlIaUUpRoFU0pAWgWR0CXClfsNUfgdX2UKGgGaAloD0MI9l580V69cECUhpRSlGgVTQ8BaBZHQJcKX5M10kp1fZQoaAZoCWgPQwgejNgnQH1xQJSGlFKUaBVNLgFoFkdAlwqjujRD1HV9lChoBmgJaA9DCPdY+tAFrW5AlIaUUpRoFU0XAWgWR0CXCybp/wy7dX2UKGgGaAloD0MI83LYfcdoMkCUhpRSlGgVS+5oFkdAlwtDZDiOvXV9lChoBmgJaA9DCKj8a3nlbVBAlIaUUpRoFUvmaBZHQJcMSUxEfDF1fZQoaAZoCWgPQwifq63YX3xxQJSGlFKUaBVNCQFoFkdAlwxpEUj9oHV9lChoBmgJaA9DCEFEatpFOm9AlIaUUpRoFU3fAWgWR0CXDQUlAu7IdX2UKGgGaAloD0MISUc5mA3lcECUhpRSlGgVTS4BaBZHQJcNnm8ujAV1fZQoaAZoCWgPQwiDvvT2p5FxQJSGlFKUaBVNEgNoFkdAlw5ZFCswL3V9lChoBmgJaA9DCLfSa7MxfHBAlIaUUpRoFU0EAWgWR0CXDnzvZyuIdX2UKGgGaAloD0MIDJOpglGfTkCUhpRSlGgVS9NoFkdAlw/p8rqdH3V9lChoBmgJaA9DCNGuQsrPx25AlIaUUpRoFU0ZAWgWR0CXEDU5MlC1dX2UKGgGaAloD0MIkdRCyWTmb0CUhpRSlGgVTR8BaBZHQJcRvQWvbGp1fZQoaAZoCWgPQwhqMXiYdhxzQJSGlFKUaBVL+mgWR0CXEdschkiEdX2UKGgGaAloD0MIUIvBwzQmckCUhpRSlGgVTUYBaBZHQJcSSOIZZSx1fZQoaAZoCWgPQwgyHTo971hvQJSGlFKUaBVNZQFoFkdAlxJXjlxOtXV9lChoBmgJaA9DCDiGAOBYd3FAlIaUUpRoFU0rAWgWR0CXEnvF3pwCdX2UKGgGaAloD0MI6s2o+SqfcECUhpRSlGgVTSQBaBZHQJcSj7/GVA11fZQoaAZoCWgPQwgAqOLGrbRwQJSGlFKUaBVNLwFoFkdAlxN4gieNDXV9lChoBmgJaA9DCB0ibk6l/m1AlIaUUpRoFU0QAWgWR0CXE7uk1uR+dX2UKGgGaAloD0MI3A4Ni9EWbUCUhpRSlGgVTSsBaBZHQJcUXguRLbp1fZQoaAZoCWgPQwhmu0IfLFMTQJSGlFKUaBVL1mgWR0CXFHqfOD8MdX2UKGgGaAloD0MIdQRws/gXb0CUhpRSlGgVTRcBaBZHQJcUls+FDfF1fZQoaAZoCWgPQwhxAz4/TJJwQJSGlFKUaBVNGAFoFkdAlxU4ku6ErXV9lChoBmgJaA9DCGggls1cBnNAlIaUUpRoFU1RAWgWR0CXF6Qk5ZKWdX2UKGgGaAloD0MIKGVSQ5sKckCUhpRSlGgVTRcBaBZHQJcXwhbGFSN1fZQoaAZoCWgPQwjcL5+sGDRxQJSGlFKUaBVNRQFoFkdAlxmkALiMpHV9lChoBmgJaA9DCAXgn1Kl6G5AlIaUUpRoFU0dAWgWR0CXGhV9nbqRdX2UKGgGaAloD0MIHERrRdtqcECUhpRSlGgVTQ0BaBZHQJcaKU6gdwN1fZQoaAZoCWgPQwg+eO3SBtVuQJSGlFKUaBVNEQFoFkdAlxpaYRdyDXV9lChoBmgJaA9DCLD/OjdthnFAlIaUUpRoFU0oAWgWR0CXGzdPLxI8dX2UKGgGaAloD0MInPwWnaw8cUCUhpRSlGgVTWYCaBZHQJcbRxNqQBB1fZQoaAZoCWgPQwilL4Sc9xhwQJSGlFKUaBVNMgFoFkdAlxumwiaAnXV9lChoBmgJaA9DCPt46Lvbd3BAlIaUUpRoFU0XAWgWR0CXHBS/TLGJdX2UKGgGaAloD0MIEhPU8K3kcUCUhpRSlGgVTS4BaBZHQJccdeLNwBJ1fZQoaAZoCWgPQwgT8kHPZiFxQJSGlFKUaBVNagFoFkdAlxyMRg7YCnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82902b295df3d06a940ddc693d1f0cfbfa638905624a38f15172bfe6382a5fce
|
3 |
+
size 147332
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f38d5412280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f38d5412310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f38d54123a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f38d5412430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f38d54124c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f38d5412550>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f38d54125e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f38d5412670>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f38d5412700>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f38d5412790>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f38d5412820>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f38d540e480>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671531733824069583,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAP3wa75HgR4/WvQ5PRoDhL4Sl9u9SyJNPQAAAAAAAAAA2vTPvQ+Ekj9XEZS+VV7gvrFpI767tSG9AAAAAAAAAAAtbpm+mD9ZP86gAj60cYK+KFkTvs5VAD4AAAAAAAAAADM7kbyyFTQ+rcz/vKYcTb7J8jc8uog1PQAAAAAAAAAAMz4qvVxjYLpSGzO7q2FRObyXirrW3ry4AACAPwAAgD/aAsI9qEvYPp4mML5rJJW+CNqSvO5yNz0AAAAAAAAAAEBogL0v85g/phllvTt1wr65mdK8auD4vAAAAAAAAAAAzQwxvHy/oz8wjX69Fljwvp3NlTpKXlm9AAAAAAAAAACznzC9XdgwP4pPsjwqrcG+N7wtPLgmOj0AAAAAAAAAAHpwhr5ZeIM/YC5avvV5tb464JO+alwtPgAAAAAAAAAATX0zPa6hjbp/rUC0vDS0rzI9s7rvxpkzAACAPwAAgD+AADq9cXBIu+YgwbuRyI487LOFPMOddb0AAIA/AACAP4AXcj1XIHU/toqDPSOP0L4dMRg9xWgYvQAAAAAAAAAAs8JZvjW5fT766Ug+q/1/vv16Ab2axuc8AAAAAAAAAAAzbYo9jy4SusZOxTQaxPkueyILOh+dtLMAAAAAAACAPya9nj2IqJ0/pSzUPoFuBb8vyrg90ouIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI98d71YoAckCUhpRSlIwBbJRNKgGMAXSUR0CW0i0Jng5zdX2UKGgGaAloD0MIgAuyZTkIckCUhpRSlGgVTTYBaBZHQJbSVM9KVY91fZQoaAZoCWgPQwhjC0EOytlwQJSGlFKUaBVNCwFoFkdAltJUTQE6k3V9lChoBmgJaA9DCPerAN+t+XBAlIaUUpRoFU1rA2gWR0CW1J2c8TzvdX2UKGgGaAloD0MIs7eU8wUucUCUhpRSlGgVTRgBaBZHQJbUpqVQhwF1fZQoaAZoCWgPQwjLS/4n/31xQJSGlFKUaBVNRgFoFkdAltWD8pCrtHV9lChoBmgJaA9DCJGBPLt8RG9AlIaUUpRoFU0kAWgWR0CW1py5I6KcdX2UKGgGaAloD0MI/kY7bri4cUCUhpRSlGgVTToBaBZHQJbW1LM9r451fZQoaAZoCWgPQwhr9GqAUsxyQJSGlFKUaBVNEgFoFkdAltcqN2ki2XV9lChoBmgJaA9DCPlM9s9TAHBAlIaUUpRoFU0bAWgWR0CW12PYnOSodX2UKGgGaAloD0MIqI/AH/4YbkCUhpRSlGgVTRoBaBZHQJbXrtv4ubt1fZQoaAZoCWgPQwgmNbQBmIxxQJSGlFKUaBVNLAFoFkdAltgO3QUpNXV9lChoBmgJaA9DCBo2yvqNvXFAlIaUUpRoFU0fAWgWR0CW2DM8YAKfdX2UKGgGaAloD0MITDRIwdNFcECUhpRSlGgVTUEBaBZHQJbamMglnh91fZQoaAZoCWgPQwi5N79hottsQJSGlFKUaBVNIAFoFkdAltqpng5zYHV9lChoBmgJaA9DCG6LMhskg3JAlIaUUpRoFU1OAWgWR0CW20P1tfoidX2UKGgGaAloD0MIr1sExvqLbECUhpRSlGgVTU0BaBZHQJbcIzJp35h1fZQoaAZoCWgPQwhnCwitR/5wQJSGlFKUaBVNAQFoFkdAltx2T9sJpnV9lChoBmgJaA9DCFOVtrjGAUZAlIaUUpRoFUu7aBZHQJbdFQ+EAYJ1fZQoaAZoCWgPQwho6nWLANJxQJSGlFKUaBVNIAFoFkdAlt5ffXPJJXV9lChoBmgJaA9DCHukwW1txHBAlIaUUpRoFU2pAWgWR0CW3ubeMyaedX2UKGgGaAloD0MIlIjwLwL+cECUhpRSlGgVTeQBaBZHQJbfeGpMpPR1fZQoaAZoCWgPQwi9baZCvBVvQJSGlFKUaBVNLwFoFkdAluCnwsoUjHV9lChoBmgJaA9DCMLCSZq/yHBAlIaUUpRoFU0OAWgWR0CW4Lk3juKGdX2UKGgGaAloD0MIieqtga0ecECUhpRSlGgVTUIBaBZHQJbg7ENvwVl1fZQoaAZoCWgPQwiTxJJyt1NwQJSGlFKUaBVNUAFoFkdAluElwLmZE3V9lChoBmgJaA9DCHmSdM3kdnFAlIaUUpRoFU0vAWgWR0CW4YlXRw6ydX2UKGgGaAloD0MIdzHNdC+acECUhpRSlGgVTVwBaBZHQJbiY9q1w5x1fZQoaAZoCWgPQwjG4GHaN1lSQJSGlFKUaBVLu2gWR0CW4uCNS619dX2UKGgGaAloD0MIrtf0oCB9cUCUhpRSlGgVTdgBaBZHQJbjIVM23rl1fZQoaAZoCWgPQwhhp1g1CGhyQJSGlFKUaBVNGgFoFkdAluNZFkQPJHV9lChoBmgJaA9DCPbSFAEObHBAlIaUUpRoFU0BAWgWR0CW4+4xDb8FdX2UKGgGaAloD0MIxJYeTXXUcUCUhpRSlGgVTSEBaBZHQJbkFSBK+SN1fZQoaAZoCWgPQwhiEFg5tDRwQJSGlFKUaBVNUAFoFkdAluTEaMrEtXV9lChoBmgJaA9DCAznGmZoskNAlIaUUpRoFUvNaBZHQJbmWKZUkv91fZQoaAZoCWgPQwj9aaM6HRBTQJSGlFKUaBVL42gWR0CW6DQkona4dX2UKGgGaAloD0MIqtIW13gbcUCUhpRSlGgVTUIBaBZHQJboqtFKCg91fZQoaAZoCWgPQwg0vFmDN7JxQJSGlFKUaBVNCAFoFkdAlujFOj7AL3V9lChoBmgJaA9DCNJWJZG9O3FAlIaUUpRoFU0QAWgWR0CW6NrJKaoddX2UKGgGaAloD0MIFcrC11c2bECUhpRSlGgVTTUBaBZHQJbo2eYlY2d1fZQoaAZoCWgPQwjvxoLCIMFwQJSGlFKUaBVNnQFoFkdAluksLncL0HV9lChoBmgJaA9DCISB595D529AlIaUUpRoFU0RAWgWR0CW6qJ0nw5OdX2UKGgGaAloD0MIMPSI0bM/ckCUhpRSlGgVTQ0BaBZHQJbrTZpSJj51fZQoaAZoCWgPQwhEFJM3gMNxQJSGlFKUaBVNYgFoFkdAluu0wFkhBHV9lChoBmgJaA9DCJHSbB4HunJAlIaUUpRoFU0TAWgWR0CW67x+8XendX2UKGgGaAloD0MITYI3pBEHcUCUhpRSlGgVTSoBaBZHQJbr6df9gnd1fZQoaAZoCWgPQwgd5PVgErlwQJSGlFKUaBVN/wFoFkdAlwDeRLbpNnV9lChoBmgJaA9DCIVbPpLSf3BAlIaUUpRoFU1GAWgWR0CXAQ9uxbB5dX2UKGgGaAloD0MIqmVrfZGqSUCUhpRSlGgVS7VoFkdAlwFAOavzOHV9lChoBmgJaA9DCNKMRdNZYm5AlIaUUpRoFU01AWgWR0CXAWFev6j4dX2UKGgGaAloD0MI1ljC2hhZU0CUhpRSlGgVS9JoFkdAlwH1GoaUA3V9lChoBmgJaA9DCLn+XZ+5KHNAlIaUUpRoFU0oAWgWR0CXAnl8gIQfdX2UKGgGaAloD0MIETRmEvUqckCUhpRSlGgVS/toFkdAlwKnUDuBtnV9lChoBmgJaA9DCMBZSpYT425AlIaUUpRoFU0GAWgWR0CXA7Jng5zYdX2UKGgGaAloD0MIWKoLeFkccECUhpRSlGgVTSIBaBZHQJcED/T9bX91fZQoaAZoCWgPQwiPOGQDacZwQJSGlFKUaBVNKQFoFkdAlwRgyEcsDnV9lChoBmgJaA9DCB5uh4YFuHBAlIaUUpRoFUv/aBZHQJcE6jTKDCh1fZQoaAZoCWgPQwgn+RG/IidwQJSGlFKUaBVNJQFoFkdAlwa8zqKP4nV9lChoBmgJaA9DCD83NGXnZHBAlIaUUpRoFU0/AWgWR0CXCCu2Zy+6dX2UKGgGaAloD0MIMX4a9+ZvbECUhpRSlGgVTT0BaBZHQJcIUQtjCpF1fZQoaAZoCWgPQwhv1ArTty1wQJSGlFKUaBVNDQFoFkdAlwkt1+y7gHV9lChoBmgJaA9DCNy3Wicu30lAlIaUUpRoFUvjaBZHQJcJxO9FnZl1fZQoaAZoCWgPQwi5GAPruD1wQJSGlFKUaBVNKAFoFkdAlwnqI3zcynV9lChoBmgJaA9DCGyzsRIzJHFAlIaUUpRoFU0pAWgWR0CXClfsNUfgdX2UKGgGaAloD0MI9l580V69cECUhpRSlGgVTQ8BaBZHQJcKX5M10kp1fZQoaAZoCWgPQwgejNgnQH1xQJSGlFKUaBVNLgFoFkdAlwqjujRD1HV9lChoBmgJaA9DCPdY+tAFrW5AlIaUUpRoFU0XAWgWR0CXCybp/wy7dX2UKGgGaAloD0MI83LYfcdoMkCUhpRSlGgVS+5oFkdAlwtDZDiOvXV9lChoBmgJaA9DCKj8a3nlbVBAlIaUUpRoFUvmaBZHQJcMSUxEfDF1fZQoaAZoCWgPQwifq63YX3xxQJSGlFKUaBVNCQFoFkdAlwxpEUj9oHV9lChoBmgJaA9DCEFEatpFOm9AlIaUUpRoFU3fAWgWR0CXDQUlAu7IdX2UKGgGaAloD0MISUc5mA3lcECUhpRSlGgVTS4BaBZHQJcNnm8ujAV1fZQoaAZoCWgPQwiDvvT2p5FxQJSGlFKUaBVNEgNoFkdAlw5ZFCswL3V9lChoBmgJaA9DCLfSa7MxfHBAlIaUUpRoFU0EAWgWR0CXDnzvZyuIdX2UKGgGaAloD0MIDJOpglGfTkCUhpRSlGgVS9NoFkdAlw/p8rqdH3V9lChoBmgJaA9DCNGuQsrPx25AlIaUUpRoFU0ZAWgWR0CXEDU5MlC1dX2UKGgGaAloD0MIkdRCyWTmb0CUhpRSlGgVTR8BaBZHQJcRvQWvbGp1fZQoaAZoCWgPQwhqMXiYdhxzQJSGlFKUaBVL+mgWR0CXEdschkiEdX2UKGgGaAloD0MIUIvBwzQmckCUhpRSlGgVTUYBaBZHQJcSSOIZZSx1fZQoaAZoCWgPQwgyHTo971hvQJSGlFKUaBVNZQFoFkdAlxJXjlxOtXV9lChoBmgJaA9DCDiGAOBYd3FAlIaUUpRoFU0rAWgWR0CXEnvF3pwCdX2UKGgGaAloD0MI6s2o+SqfcECUhpRSlGgVTSQBaBZHQJcSj7/GVA11fZQoaAZoCWgPQwgAqOLGrbRwQJSGlFKUaBVNLwFoFkdAlxN4gieNDXV9lChoBmgJaA9DCB0ibk6l/m1AlIaUUpRoFU0QAWgWR0CXE7uk1uR+dX2UKGgGaAloD0MI3A4Ni9EWbUCUhpRSlGgVTSsBaBZHQJcUXguRLbp1fZQoaAZoCWgPQwhmu0IfLFMTQJSGlFKUaBVL1mgWR0CXFHqfOD8MdX2UKGgGaAloD0MIdQRws/gXb0CUhpRSlGgVTRcBaBZHQJcUls+FDfF1fZQoaAZoCWgPQwhxAz4/TJJwQJSGlFKUaBVNGAFoFkdAlxU4ku6ErXV9lChoBmgJaA9DCGggls1cBnNAlIaUUpRoFU1RAWgWR0CXF6Qk5ZKWdX2UKGgGaAloD0MIKGVSQ5sKckCUhpRSlGgVTRcBaBZHQJcXwhbGFSN1fZQoaAZoCWgPQwjcL5+sGDRxQJSGlFKUaBVNRQFoFkdAlxmkALiMpHV9lChoBmgJaA9DCAXgn1Kl6G5AlIaUUpRoFU0dAWgWR0CXGhV9nbqRdX2UKGgGaAloD0MIHERrRdtqcECUhpRSlGgVTQ0BaBZHQJcaKU6gdwN1fZQoaAZoCWgPQwg+eO3SBtVuQJSGlFKUaBVNEQFoFkdAlxpaYRdyDXV9lChoBmgJaA9DCLD/OjdthnFAlIaUUpRoFU0oAWgWR0CXGzdPLxI8dX2UKGgGaAloD0MInPwWnaw8cUCUhpRSlGgVTWYCaBZHQJcbRxNqQBB1fZQoaAZoCWgPQwilL4Sc9xhwQJSGlFKUaBVNMgFoFkdAlxumwiaAnXV9lChoBmgJaA9DCPt46Lvbd3BAlIaUUpRoFU0XAWgWR0CXHBS/TLGJdX2UKGgGaAloD0MIEhPU8K3kcUCUhpRSlGgVTS4BaBZHQJccdeLNwBJ1fZQoaAZoCWgPQwgT8kHPZiFxQJSGlFKUaBVNagFoFkdAlxyMRg7YCnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:215aed7a8cdecbdbb9c7bc0e59a328565cedf1d9fdbcedd07ed649aa6c6a4d80
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b8428a89b7e898a182931c2497c4c123fff3c0aec872512bb0ad44a7634d731
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 254.3906351446064, "std_reward": 24.223749314857223, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T11:05:18.121922"}
|