--- license: creativeml-openrail-m base_model: kyujinpy/KO-anything-v4-5 training_prompt: A bear is playing guitar tags: - tune-a-video - text-to-video - diffusers - korean inference: false --- # Tune-A-VideKO-anything Github: [Kyujinpy/Tune-A-VideKO](https://github.com/KyujinHan/Tune-A-VideKO) ## Model Description - Base model: [kyujinpy/KO-anything-v4-5](https://huggingface.co./kyujinpy/KO-anything-v4-5) - Training prompt: A bear is playing guitar ![sample-train](bear.gif) ## Samples ![sample-500](video1.gif) Test prompt: 1소녀는 기타를 연주하고 있다, 흰 머리, 중간 머리, 고양이 귀, 귀여운, 스카프, 재킷, 야외, 거리, 소녀 ![sample-500](video2.gif) Test prompt: 1소녀가 기타 연주를 하고 있습니다, 바다, 눈을 감음, 긴 머리, 카리스마 ![sample-500](video3.gif) Test prompt: 1소년, 기타 연주, 잘생김, 앉아있는, 빨간색 기타, 해변 ## Usage Clone the github repo ```bash git clone https://github.com/showlab/Tune-A-Video.git ``` Run inference code ```python from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.util import save_videos_grid import torch pretrained_model_path = "kyujinpy/KO-anything-v4-5" unet_model_path = "kyujinpy/Tune-A-VideKO-anything" unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda') pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda") pipe.enable_xformers_memory_efficient_attention() prompt = "1소녀는 기타를 연주하고 있다, 흰 머리, 중간 머리, 고양이 귀, 귀여운, 스카프, 재킷, 야외, 거리, 소녀" video = pipe(prompt, video_length=14, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos save_videos_grid(video, f"./{prompt}.gif") ``` ## Related Papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models