--- language: - ko datasets: - kyujinpy/OpenOrca-ko-v2 library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** **The license is `cc-by-nc-sa-4.0`.** # **🐳Korean-OpenOrca-13B-v2🐳** ![img](./Korean-OpenOrca.png) ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Model Architecture** Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. **Repo Link** Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca) **Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co./hyunseoki/ko-en-llama2-13b) **Training Dataset** I use [OpenOrca-ko-v2(private)](https://huggingface.co./datasets/kyujinpy/OpenOrca-ko-v2). Using DeepL, translate about [OpenOrca](https://huggingface.co./datasets/Open-Orca/OpenOrca). I use A100 GPU 40GB and COLAB, when trianing. # Model comparisons | Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | [Korean-OpenOrca-13B🐳] | 47.85 | 43.09 | 54.13 | 40.24 | 45.22 | 56.57 | | Korean-OpenOrca-13B-v2🐳 | NaN | NaN | NaN | NaN | NaN | NaN | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Korean-OpenOrca-13B-v2" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---