--- language: - ko datasets: - kyujinpy/KOR-OpenOrca-Platypus-v3 library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **Ko-PlatYi-6B** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Ko-PlatYi-6B is an auto-regressive language model based on the Yi-34B transformer architecture. **Blog Link** Blog: [Coming soon...] Github: [Coming soon...] **Base Model** [beomi/Yi-Ko-6B](https://huggingface.co./beomi/Yi-Ko-6B) **Training Dataset** [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | CommonGen-V2 | | --- | --- | --- | --- | --- | --- | --- | | **Ko-PlatYi-6B** | NaN | NaN | NaN | NaN | NaN | NaN | | **Yi-Ko-6B** | 48.79 | 41.04 | 53.39 | 46.28 | 41.64 | 61.63 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Ko-PlatYi-6B" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ```