File size: 1,504 Bytes
ea5c993 e7a2678 ea5c993 e7a2678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language:
- ko
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
# **Ko-PlatYi-6B**
<img src='./Ko-PlatYi.png' width=256>
## Model Details
**Model Developers** Kyujin Han (kyujinpy)
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
Ko-PlatYi-6B is an auto-regressive language model based on the Yi-34B transformer architecture.
**Blog Link**
Blog: [Coming soon...]
Github: [Coming soon...]
**Base Model**
[beomi/Yi-Ko-6B](https://huggingface.co./beomi/Yi-Ko-6B)
**Training Dataset**
[kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3).
# **Model Benchmark**
## Open leaderboard
- Follow up as [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard).
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | CommonGen-V2 |
| --- | --- | --- | --- | --- | --- | --- |
| **Ko-PlatYi-6B** | NaN | NaN | NaN | NaN | NaN | NaN |
| **Yi-Ko-6B** | 48.79 | 41.04 | 53.39 | 46.28 | 41.64 | 61.63 |
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Ko-PlatYi-6B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
--- |