clubbed_finetuned_model / modeling_olmo.py
kyone's picture
Upload OLMoForCausalLM
3d6b885 verified
raw
history blame
5.03 kB
from dataclasses import fields
from typing import List, Optional, Tuple, Union
import torch
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.auto import AutoModelForCausalLM
from olmo.config import ModelConfig
from olmo.model import Olmo
from .configuration_olmo import OLMoConfig
def create_model_config_from_pretrained_config(config: OLMoConfig):
"""
Utility function
"""
kwargs = {}
for field in fields(ModelConfig):
kwargs[field.name] = getattr(config, field.name)
model_config = ModelConfig(**kwargs)
return model_config
class OLMoForCausalLM(PreTrainedModel):
"""
Extremely barebones HF model wrapper.
"""
config_class = OLMoConfig
base_model_prefix = "model"
_no_split_modules = ["OLMoBlock"]
def __init__(self, config: OLMoConfig, model: Optional[Olmo] = None, init_params: bool = False):
super().__init__(config)
if not model:
model_config = create_model_config_from_pretrained_config(config)
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
model_config.init_device = "cpu"
self.model = Olmo(model_config, init_params=init_params)
else:
self.model = model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if use_cache is None:
use_cache = self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = torch.nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.embedding_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.attn_key_values,
)
def can_generate(self) -> bool:
return True
def prepare_inputs_for_generation(
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
):
if past_key_values:
# This is because we want the model to only process the last generated token.
input_ids = input_ids[:, -1:]
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
model_inputs.update(kwargs)
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
return model_inputs
# TODO: these are required to make the implementation complete.
# def resize_position_embeddings(self, new_num_position_embeddings: int):
# pass
#
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
# pass
#
# def _reorder_cache(self, past_key_values, beam_idx):
# pass
def get_input_embeddings(self) -> torch.nn.Module:
return self.model.transformer.wte
def set_input_embeddings(self, value: torch.nn.Module):
self.model.transformer.wte = value
def get_output_embeddings(self):
if self.config.weight_tying:
return self.model.transformer.wte
else:
return self.model.transformer.ff_out
def set_output_embeddings(self, value: torch.nn.Module):
if self.config.weight_tying:
self.model.transformer.wte = value
else:
self.model.transformer.ff_out = value
def tie_weights(self):
if self.config.weight_tying:
self.model.transformer.ff_out = self.model.transformer.wte
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)