--- license: other base_model: google/gemma-7b tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: gemma-7b-ultrachat-sft results: [] --- # gemma-7b-ultrachat-sft This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.1229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1236 | 1.0 | 954 | 1.1430 | | 1.0327 | 2.0 | 1909 | 1.1133 | | 0.8854 | 3.0 | 2862 | 1.1229 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2