--- base_model: meta-llama/Llama-2-7b-hf tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: Llama-2-7b-hf-sft-full-3e results: [] --- # Llama-2-7b-hf-sft-full-3e This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co./meta-llama/Llama-2-7b-hf) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 0.9247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.931 | 0.7 | 285 | 0.9350 | | 0.8672 | 1.7 | 570 | 0.9245 | | 0.8189 | 2.7 | 855 | 0.9248 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.0