kwwww commited on
Commit
e0eada3
·
1 Parent(s): 5f1c9ab

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -0
README.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - bionlp2004
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-base-uncased_1_16619_token
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # bert-base-uncased_1_16619_token
21
+
22
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the bionlp2004 dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1710
25
+ - Precision: 0.7741
26
+ - Recall: 0.8224
27
+ - F1: 0.7975
28
+ - Accuracy: 0.9480
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.001
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 50
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.2323 | 1.0 | 1039 | 0.1995 | 0.6662 | 0.7625 | 0.7111 | 0.9308 |
60
+ | 0.2094 | 2.0 | 2078 | 0.1827 | 0.7369 | 0.7693 | 0.7528 | 0.9392 |
61
+ | 0.1976 | 3.0 | 3117 | 0.1748 | 0.7272 | 0.7886 | 0.7566 | 0.9402 |
62
+ | 0.1924 | 4.0 | 4156 | 0.1770 | 0.7284 | 0.7940 | 0.7598 | 0.9402 |
63
+ | 0.1841 | 5.0 | 5195 | 0.1703 | 0.7421 | 0.7852 | 0.7630 | 0.9422 |
64
+ | 0.1821 | 6.0 | 6234 | 0.1733 | 0.7337 | 0.7961 | 0.7636 | 0.9411 |
65
+ | 0.1789 | 7.0 | 7273 | 0.1727 | 0.7358 | 0.7765 | 0.7556 | 0.9418 |
66
+ | 0.1782 | 8.0 | 8312 | 0.1682 | 0.7395 | 0.8042 | 0.7705 | 0.9435 |
67
+ | 0.178 | 9.0 | 9351 | 0.1636 | 0.7453 | 0.8055 | 0.7742 | 0.9443 |
68
+ | 0.1687 | 10.0 | 10390 | 0.1915 | 0.7169 | 0.7654 | 0.7404 | 0.9362 |
69
+ | 0.1671 | 11.0 | 11429 | 0.1655 | 0.7552 | 0.7781 | 0.7665 | 0.9428 |
70
+ | 0.1633 | 12.0 | 12468 | 0.1755 | 0.7123 | 0.8251 | 0.7646 | 0.9398 |
71
+ | 0.1616 | 13.0 | 13507 | 0.1639 | 0.7405 | 0.7900 | 0.7645 | 0.9435 |
72
+ | 0.1611 | 14.0 | 14546 | 0.1620 | 0.7632 | 0.7979 | 0.7802 | 0.9460 |
73
+ | 0.1616 | 15.0 | 15585 | 0.1624 | 0.7494 | 0.8006 | 0.7742 | 0.9445 |
74
+ | 0.1577 | 16.0 | 16624 | 0.1680 | 0.7551 | 0.8001 | 0.7770 | 0.9456 |
75
+ | 0.1567 | 17.0 | 17663 | 0.1666 | 0.7446 | 0.8133 | 0.7774 | 0.9446 |
76
+ | 0.1511 | 18.0 | 18702 | 0.1678 | 0.7479 | 0.8133 | 0.7792 | 0.9437 |
77
+ | 0.1537 | 19.0 | 19741 | 0.1610 | 0.7651 | 0.7988 | 0.7816 | 0.9469 |
78
+ | 0.15 | 20.0 | 20780 | 0.1613 | 0.7498 | 0.8228 | 0.7846 | 0.9458 |
79
+ | 0.1499 | 21.0 | 21819 | 0.1634 | 0.7480 | 0.8088 | 0.7772 | 0.9434 |
80
+ | 0.1496 | 22.0 | 22858 | 0.1635 | 0.7508 | 0.8149 | 0.7815 | 0.9456 |
81
+ | 0.1487 | 23.0 | 23897 | 0.1603 | 0.7537 | 0.8253 | 0.7879 | 0.9462 |
82
+ | 0.1425 | 24.0 | 24936 | 0.1614 | 0.7642 | 0.8077 | 0.7853 | 0.9458 |
83
+ | 0.1427 | 25.0 | 25975 | 0.1727 | 0.7601 | 0.8021 | 0.7805 | 0.9456 |
84
+ | 0.1408 | 26.0 | 27014 | 0.1616 | 0.7690 | 0.8152 | 0.7914 | 0.9462 |
85
+ | 0.1401 | 27.0 | 28053 | 0.1613 | 0.7661 | 0.8032 | 0.7842 | 0.9463 |
86
+ | 0.1387 | 28.0 | 29092 | 0.1642 | 0.7585 | 0.8169 | 0.7866 | 0.9457 |
87
+ | 0.1354 | 29.0 | 30131 | 0.1650 | 0.7453 | 0.8214 | 0.7815 | 0.9455 |
88
+ | 0.1331 | 30.0 | 31170 | 0.1622 | 0.7744 | 0.8152 | 0.7943 | 0.9477 |
89
+ | 0.1325 | 31.0 | 32209 | 0.1626 | 0.7592 | 0.8142 | 0.7857 | 0.9454 |
90
+ | 0.1338 | 32.0 | 33248 | 0.1628 | 0.7564 | 0.8152 | 0.7847 | 0.9455 |
91
+ | 0.1296 | 33.0 | 34287 | 0.1660 | 0.7706 | 0.8203 | 0.7947 | 0.9469 |
92
+ | 0.1323 | 34.0 | 35326 | 0.1647 | 0.7674 | 0.8120 | 0.7890 | 0.9466 |
93
+ | 0.1275 | 35.0 | 36365 | 0.1644 | 0.7715 | 0.8118 | 0.7912 | 0.9469 |
94
+ | 0.1245 | 36.0 | 37404 | 0.1607 | 0.7717 | 0.8280 | 0.7989 | 0.9486 |
95
+ | 0.1261 | 37.0 | 38443 | 0.1620 | 0.7691 | 0.8230 | 0.7951 | 0.9476 |
96
+ | 0.1221 | 38.0 | 39482 | 0.1680 | 0.7645 | 0.8116 | 0.7874 | 0.9468 |
97
+ | 0.1211 | 39.0 | 40521 | 0.1682 | 0.7615 | 0.8172 | 0.7884 | 0.9451 |
98
+ | 0.1236 | 40.0 | 41560 | 0.1625 | 0.7730 | 0.8246 | 0.7979 | 0.9472 |
99
+ | 0.1165 | 41.0 | 42599 | 0.1714 | 0.7629 | 0.8149 | 0.7881 | 0.9456 |
100
+ | 0.1188 | 42.0 | 43638 | 0.1677 | 0.7729 | 0.8143 | 0.7931 | 0.9474 |
101
+ | 0.1166 | 43.0 | 44677 | 0.1702 | 0.7674 | 0.8318 | 0.7983 | 0.9467 |
102
+ | 0.1159 | 44.0 | 45716 | 0.1720 | 0.7709 | 0.8235 | 0.7963 | 0.9472 |
103
+ | 0.1135 | 45.0 | 46755 | 0.1707 | 0.7772 | 0.8197 | 0.7979 | 0.9475 |
104
+ | 0.1134 | 46.0 | 47794 | 0.1710 | 0.7742 | 0.8174 | 0.7952 | 0.9477 |
105
+ | 0.1121 | 47.0 | 48833 | 0.1682 | 0.7756 | 0.8248 | 0.7994 | 0.9478 |
106
+ | 0.1098 | 48.0 | 49872 | 0.1711 | 0.7724 | 0.8206 | 0.7958 | 0.9475 |
107
+ | 0.1108 | 49.0 | 50911 | 0.1712 | 0.7741 | 0.8208 | 0.7968 | 0.9476 |
108
+ | 0.1062 | 50.0 | 51950 | 0.1710 | 0.7741 | 0.8224 | 0.7975 | 0.9480 |
109
+
110
+
111
+ ### Framework versions
112
+
113
+ - Transformers 4.29.2
114
+ - Pytorch 2.0.1+cu117
115
+ - Datasets 2.12.0
116
+ - Tokenizers 0.13.3