update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- bionlp2004
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bert-base-uncased_1_16619_token
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# bert-base-uncased_1_16619_token
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the bionlp2004 dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1710
|
25 |
+
- Precision: 0.7741
|
26 |
+
- Recall: 0.8224
|
27 |
+
- F1: 0.7975
|
28 |
+
- Accuracy: 0.9480
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.001
|
48 |
+
- train_batch_size: 16
|
49 |
+
- eval_batch_size: 16
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 50
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.2323 | 1.0 | 1039 | 0.1995 | 0.6662 | 0.7625 | 0.7111 | 0.9308 |
|
60 |
+
| 0.2094 | 2.0 | 2078 | 0.1827 | 0.7369 | 0.7693 | 0.7528 | 0.9392 |
|
61 |
+
| 0.1976 | 3.0 | 3117 | 0.1748 | 0.7272 | 0.7886 | 0.7566 | 0.9402 |
|
62 |
+
| 0.1924 | 4.0 | 4156 | 0.1770 | 0.7284 | 0.7940 | 0.7598 | 0.9402 |
|
63 |
+
| 0.1841 | 5.0 | 5195 | 0.1703 | 0.7421 | 0.7852 | 0.7630 | 0.9422 |
|
64 |
+
| 0.1821 | 6.0 | 6234 | 0.1733 | 0.7337 | 0.7961 | 0.7636 | 0.9411 |
|
65 |
+
| 0.1789 | 7.0 | 7273 | 0.1727 | 0.7358 | 0.7765 | 0.7556 | 0.9418 |
|
66 |
+
| 0.1782 | 8.0 | 8312 | 0.1682 | 0.7395 | 0.8042 | 0.7705 | 0.9435 |
|
67 |
+
| 0.178 | 9.0 | 9351 | 0.1636 | 0.7453 | 0.8055 | 0.7742 | 0.9443 |
|
68 |
+
| 0.1687 | 10.0 | 10390 | 0.1915 | 0.7169 | 0.7654 | 0.7404 | 0.9362 |
|
69 |
+
| 0.1671 | 11.0 | 11429 | 0.1655 | 0.7552 | 0.7781 | 0.7665 | 0.9428 |
|
70 |
+
| 0.1633 | 12.0 | 12468 | 0.1755 | 0.7123 | 0.8251 | 0.7646 | 0.9398 |
|
71 |
+
| 0.1616 | 13.0 | 13507 | 0.1639 | 0.7405 | 0.7900 | 0.7645 | 0.9435 |
|
72 |
+
| 0.1611 | 14.0 | 14546 | 0.1620 | 0.7632 | 0.7979 | 0.7802 | 0.9460 |
|
73 |
+
| 0.1616 | 15.0 | 15585 | 0.1624 | 0.7494 | 0.8006 | 0.7742 | 0.9445 |
|
74 |
+
| 0.1577 | 16.0 | 16624 | 0.1680 | 0.7551 | 0.8001 | 0.7770 | 0.9456 |
|
75 |
+
| 0.1567 | 17.0 | 17663 | 0.1666 | 0.7446 | 0.8133 | 0.7774 | 0.9446 |
|
76 |
+
| 0.1511 | 18.0 | 18702 | 0.1678 | 0.7479 | 0.8133 | 0.7792 | 0.9437 |
|
77 |
+
| 0.1537 | 19.0 | 19741 | 0.1610 | 0.7651 | 0.7988 | 0.7816 | 0.9469 |
|
78 |
+
| 0.15 | 20.0 | 20780 | 0.1613 | 0.7498 | 0.8228 | 0.7846 | 0.9458 |
|
79 |
+
| 0.1499 | 21.0 | 21819 | 0.1634 | 0.7480 | 0.8088 | 0.7772 | 0.9434 |
|
80 |
+
| 0.1496 | 22.0 | 22858 | 0.1635 | 0.7508 | 0.8149 | 0.7815 | 0.9456 |
|
81 |
+
| 0.1487 | 23.0 | 23897 | 0.1603 | 0.7537 | 0.8253 | 0.7879 | 0.9462 |
|
82 |
+
| 0.1425 | 24.0 | 24936 | 0.1614 | 0.7642 | 0.8077 | 0.7853 | 0.9458 |
|
83 |
+
| 0.1427 | 25.0 | 25975 | 0.1727 | 0.7601 | 0.8021 | 0.7805 | 0.9456 |
|
84 |
+
| 0.1408 | 26.0 | 27014 | 0.1616 | 0.7690 | 0.8152 | 0.7914 | 0.9462 |
|
85 |
+
| 0.1401 | 27.0 | 28053 | 0.1613 | 0.7661 | 0.8032 | 0.7842 | 0.9463 |
|
86 |
+
| 0.1387 | 28.0 | 29092 | 0.1642 | 0.7585 | 0.8169 | 0.7866 | 0.9457 |
|
87 |
+
| 0.1354 | 29.0 | 30131 | 0.1650 | 0.7453 | 0.8214 | 0.7815 | 0.9455 |
|
88 |
+
| 0.1331 | 30.0 | 31170 | 0.1622 | 0.7744 | 0.8152 | 0.7943 | 0.9477 |
|
89 |
+
| 0.1325 | 31.0 | 32209 | 0.1626 | 0.7592 | 0.8142 | 0.7857 | 0.9454 |
|
90 |
+
| 0.1338 | 32.0 | 33248 | 0.1628 | 0.7564 | 0.8152 | 0.7847 | 0.9455 |
|
91 |
+
| 0.1296 | 33.0 | 34287 | 0.1660 | 0.7706 | 0.8203 | 0.7947 | 0.9469 |
|
92 |
+
| 0.1323 | 34.0 | 35326 | 0.1647 | 0.7674 | 0.8120 | 0.7890 | 0.9466 |
|
93 |
+
| 0.1275 | 35.0 | 36365 | 0.1644 | 0.7715 | 0.8118 | 0.7912 | 0.9469 |
|
94 |
+
| 0.1245 | 36.0 | 37404 | 0.1607 | 0.7717 | 0.8280 | 0.7989 | 0.9486 |
|
95 |
+
| 0.1261 | 37.0 | 38443 | 0.1620 | 0.7691 | 0.8230 | 0.7951 | 0.9476 |
|
96 |
+
| 0.1221 | 38.0 | 39482 | 0.1680 | 0.7645 | 0.8116 | 0.7874 | 0.9468 |
|
97 |
+
| 0.1211 | 39.0 | 40521 | 0.1682 | 0.7615 | 0.8172 | 0.7884 | 0.9451 |
|
98 |
+
| 0.1236 | 40.0 | 41560 | 0.1625 | 0.7730 | 0.8246 | 0.7979 | 0.9472 |
|
99 |
+
| 0.1165 | 41.0 | 42599 | 0.1714 | 0.7629 | 0.8149 | 0.7881 | 0.9456 |
|
100 |
+
| 0.1188 | 42.0 | 43638 | 0.1677 | 0.7729 | 0.8143 | 0.7931 | 0.9474 |
|
101 |
+
| 0.1166 | 43.0 | 44677 | 0.1702 | 0.7674 | 0.8318 | 0.7983 | 0.9467 |
|
102 |
+
| 0.1159 | 44.0 | 45716 | 0.1720 | 0.7709 | 0.8235 | 0.7963 | 0.9472 |
|
103 |
+
| 0.1135 | 45.0 | 46755 | 0.1707 | 0.7772 | 0.8197 | 0.7979 | 0.9475 |
|
104 |
+
| 0.1134 | 46.0 | 47794 | 0.1710 | 0.7742 | 0.8174 | 0.7952 | 0.9477 |
|
105 |
+
| 0.1121 | 47.0 | 48833 | 0.1682 | 0.7756 | 0.8248 | 0.7994 | 0.9478 |
|
106 |
+
| 0.1098 | 48.0 | 49872 | 0.1711 | 0.7724 | 0.8206 | 0.7958 | 0.9475 |
|
107 |
+
| 0.1108 | 49.0 | 50911 | 0.1712 | 0.7741 | 0.8208 | 0.7968 | 0.9476 |
|
108 |
+
| 0.1062 | 50.0 | 51950 | 0.1710 | 0.7741 | 0.8224 | 0.7975 | 0.9480 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.29.2
|
114 |
+
- Pytorch 2.0.1+cu117
|
115 |
+
- Datasets 2.12.0
|
116 |
+
- Tokenizers 0.13.3
|