--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - weighted precision - weighted recall - weighted f1 - macro precision - macro recall - macro f1 widget: - text: Roles can be assigned to a user account for individual products. - text: The number of active Subscription Versions in a sample to be monitored by the NPAC SMS. - text: 'The visual representation of an SDT or a part of an SDT. ' - text: Open Society Institute Guide to Institutional Repository Software, 3rd ed. (2004) - text: 'The Application/Delete menu item shall provide an interface for deleting an application and all the files in the application directory. ' pipeline_tag: text-classification inference: true base_model: sentence-transformers/all-roberta-large-v1 model-index: - name: SetFit with sentence-transformers/all-roberta-large-v1 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7621000820344545 name: Accuracy - type: weighted precision value: 0.7627752679232598 name: Weighted Precision - type: weighted recall value: 0.7621000820344545 name: Weighted Recall - type: weighted f1 value: 0.7621663772102192 name: Weighted F1 - type: macro precision value: 0.7621734718049769 name: Macro Precision - type: macro recall value: 0.7624659767698817 name: Macro Recall - type: macro f1 value: 0.7620481988534211 name: Macro F1 --- # SetFit with sentence-transformers/all-roberta-large-v1 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-roberta-large-v1](https://huggingface.co./sentence-transformers/all-roberta-large-v1) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-roberta-large-v1](https://huggingface.co./sentence-transformers/all-roberta-large-v1) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | Weighted Precision | Weighted Recall | Weighted F1 | Macro Precision | Macro Recall | Macro F1 | |:--------|:---------|:-------------------|:----------------|:------------|:----------------|:-------------|:---------| | **all** | 0.7621 | 0.7628 | 0.7621 | 0.7622 | 0.7622 | 0.7625 | 0.7620 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("kwang123/roberta-large-setfit-ReqORNot") # Run inference preds = model("The visual representation of an SDT or a part of an SDT. ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 5 | 21.7708 | 46 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 24 | | 1 | 24 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0067 | 1 | 0.3795 | - | | 0.3333 | 50 | 0.298 | - | | 0.6667 | 100 | 0.0025 | - | | 1.0 | 150 | 0.0002 | - | | 1.3333 | 200 | 0.0002 | - | | 1.6667 | 250 | 0.0001 | - | | 2.0 | 300 | 0.0001 | - | | 2.3333 | 350 | 0.0001 | - | | 2.6667 | 400 | 0.0001 | - | | 3.0 | 450 | 0.0001 | - | | 3.3333 | 500 | 0.0 | - | | 3.6667 | 550 | 0.0 | - | | 4.0 | 600 | 0.0 | - | | 4.3333 | 650 | 0.0001 | - | | 4.6667 | 700 | 0.0 | - | | 5.0 | 750 | 0.0 | - | | 5.3333 | 800 | 0.0 | - | | 5.6667 | 850 | 0.0 | - | | 6.0 | 900 | 0.0 | - | | 6.3333 | 950 | 0.0001 | - | | 6.6667 | 1000 | 0.0 | - | | 7.0 | 1050 | 0.0 | - | | 7.3333 | 1100 | 0.0 | - | | 7.6667 | 1150 | 0.0 | - | | 8.0 | 1200 | 0.0 | - | | 8.3333 | 1250 | 0.0 | - | | 8.6667 | 1300 | 0.0 | - | | 9.0 | 1350 | 0.0 | - | | 9.3333 | 1400 | 0.0 | - | | 9.6667 | 1450 | 0.0 | - | | 10.0 | 1500 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```