|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import math
|
|
import cv2
|
|
from scipy.stats import qmc
|
|
from easydict import EasyDict as edict
|
|
from ..representations.octree import DfsOctree
|
|
|
|
|
|
def intrinsics_to_projection(
|
|
intrinsics: torch.Tensor,
|
|
near: float,
|
|
far: float,
|
|
) -> torch.Tensor:
|
|
"""
|
|
OpenCV intrinsics to OpenGL perspective matrix
|
|
|
|
Args:
|
|
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
|
|
near (float): near plane to clip
|
|
far (float): far plane to clip
|
|
Returns:
|
|
(torch.Tensor): [4, 4] OpenGL perspective matrix
|
|
"""
|
|
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
|
|
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
|
|
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
|
|
ret[0, 0] = 2 * fx
|
|
ret[1, 1] = 2 * fy
|
|
ret[0, 2] = 2 * cx - 1
|
|
ret[1, 2] = - 2 * cy + 1
|
|
ret[2, 2] = far / (far - near)
|
|
ret[2, 3] = near * far / (near - far)
|
|
ret[3, 2] = 1.
|
|
return ret
|
|
|
|
|
|
def render(viewpoint_camera, octree : DfsOctree, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, used_rank = None, colors_overwrite = None, aux=None, halton_sampler=None):
|
|
"""
|
|
Render the scene.
|
|
|
|
Background tensor (bg_color) must be on GPU!
|
|
"""
|
|
|
|
if 'OctreeTrivecRasterizer' not in globals():
|
|
from diffoctreerast import OctreeVoxelRasterizer, OctreeGaussianRasterizer, OctreeTrivecRasterizer, OctreeDecoupolyRasterizer
|
|
|
|
|
|
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
|
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
|
|
|
raster_settings = edict(
|
|
image_height=int(viewpoint_camera.image_height),
|
|
image_width=int(viewpoint_camera.image_width),
|
|
tanfovx=tanfovx,
|
|
tanfovy=tanfovy,
|
|
bg=bg_color,
|
|
scale_modifier=scaling_modifier,
|
|
viewmatrix=viewpoint_camera.world_view_transform,
|
|
projmatrix=viewpoint_camera.full_proj_transform,
|
|
sh_degree=octree.active_sh_degree,
|
|
campos=viewpoint_camera.camera_center,
|
|
with_distloss=pipe.with_distloss,
|
|
jitter=pipe.jitter,
|
|
debug=pipe.debug,
|
|
)
|
|
|
|
positions = octree.get_xyz
|
|
if octree.primitive == "voxel":
|
|
densities = octree.get_density
|
|
elif octree.primitive == "gaussian":
|
|
opacities = octree.get_opacity
|
|
elif octree.primitive == "trivec":
|
|
trivecs = octree.get_trivec
|
|
densities = octree.get_density
|
|
raster_settings.density_shift = octree.density_shift
|
|
elif octree.primitive == "decoupoly":
|
|
decoupolys_V, decoupolys_g = octree.get_decoupoly
|
|
densities = octree.get_density
|
|
raster_settings.density_shift = octree.density_shift
|
|
else:
|
|
raise ValueError(f"Unknown primitive {octree.primitive}")
|
|
depths = octree.get_depth
|
|
|
|
|
|
|
|
colors_precomp = None
|
|
shs = octree.get_features
|
|
if octree.primitive in ["voxel", "gaussian"] and colors_overwrite is not None:
|
|
colors_precomp = colors_overwrite
|
|
shs = None
|
|
|
|
ret = edict()
|
|
|
|
if octree.primitive == "voxel":
|
|
renderer = OctreeVoxelRasterizer(raster_settings=raster_settings)
|
|
rgb, depth, alpha, distloss = renderer(
|
|
positions = positions,
|
|
densities = densities,
|
|
shs = shs,
|
|
colors_precomp = colors_precomp,
|
|
depths = depths,
|
|
aabb = octree.aabb,
|
|
aux = aux,
|
|
)
|
|
ret['rgb'] = rgb
|
|
ret['depth'] = depth
|
|
ret['alpha'] = alpha
|
|
ret['distloss'] = distloss
|
|
elif octree.primitive == "gaussian":
|
|
renderer = OctreeGaussianRasterizer(raster_settings=raster_settings)
|
|
rgb, depth, alpha = renderer(
|
|
positions = positions,
|
|
opacities = opacities,
|
|
shs = shs,
|
|
colors_precomp = colors_precomp,
|
|
depths = depths,
|
|
aabb = octree.aabb,
|
|
aux = aux,
|
|
)
|
|
ret['rgb'] = rgb
|
|
ret['depth'] = depth
|
|
ret['alpha'] = alpha
|
|
elif octree.primitive == "trivec":
|
|
raster_settings.used_rank = used_rank if used_rank is not None else trivecs.shape[1]
|
|
renderer = OctreeTrivecRasterizer(raster_settings=raster_settings)
|
|
rgb, depth, alpha, percent_depth = renderer(
|
|
positions = positions,
|
|
trivecs = trivecs,
|
|
densities = densities,
|
|
shs = shs,
|
|
colors_precomp = colors_precomp,
|
|
colors_overwrite = colors_overwrite,
|
|
depths = depths,
|
|
aabb = octree.aabb,
|
|
aux = aux,
|
|
halton_sampler = halton_sampler,
|
|
)
|
|
ret['percent_depth'] = percent_depth
|
|
ret['rgb'] = rgb
|
|
ret['depth'] = depth
|
|
ret['alpha'] = alpha
|
|
elif octree.primitive == "decoupoly":
|
|
raster_settings.used_rank = used_rank if used_rank is not None else decoupolys_V.shape[1]
|
|
renderer = OctreeDecoupolyRasterizer(raster_settings=raster_settings)
|
|
rgb, depth, alpha = renderer(
|
|
positions = positions,
|
|
decoupolys_V = decoupolys_V,
|
|
decoupolys_g = decoupolys_g,
|
|
densities = densities,
|
|
shs = shs,
|
|
colors_precomp = colors_precomp,
|
|
depths = depths,
|
|
aabb = octree.aabb,
|
|
aux = aux,
|
|
)
|
|
ret['rgb'] = rgb
|
|
ret['depth'] = depth
|
|
ret['alpha'] = alpha
|
|
|
|
return ret
|
|
|
|
|
|
class OctreeRenderer:
|
|
"""
|
|
Renderer for the Voxel representation.
|
|
|
|
Args:
|
|
rendering_options (dict): Rendering options.
|
|
"""
|
|
|
|
def __init__(self, rendering_options={}) -> None:
|
|
try:
|
|
import diffoctreerast
|
|
except ImportError:
|
|
print("\033[93m[WARNING] diffoctreerast is not installed. The renderer will be disabled.\033[0m")
|
|
self.unsupported = True
|
|
else:
|
|
self.unsupported = False
|
|
|
|
self.pipe = edict({
|
|
"with_distloss": False,
|
|
"with_aux": False,
|
|
"scale_modifier": 1.0,
|
|
"used_rank": None,
|
|
"jitter": False,
|
|
"debug": False,
|
|
})
|
|
self.rendering_options = edict({
|
|
"resolution": None,
|
|
"near": None,
|
|
"far": None,
|
|
"ssaa": 1,
|
|
"bg_color": 'random',
|
|
})
|
|
self.halton_sampler = qmc.Halton(2, scramble=False)
|
|
self.rendering_options.update(rendering_options)
|
|
self.bg_color = None
|
|
|
|
def render(
|
|
self,
|
|
octree: DfsOctree,
|
|
extrinsics: torch.Tensor,
|
|
intrinsics: torch.Tensor,
|
|
colors_overwrite: torch.Tensor = None,
|
|
) -> edict:
|
|
"""
|
|
Render the octree.
|
|
|
|
Args:
|
|
octree (Octree): octree
|
|
extrinsics (torch.Tensor): (4, 4) camera extrinsics
|
|
intrinsics (torch.Tensor): (3, 3) camera intrinsics
|
|
colors_overwrite (torch.Tensor): (N, 3) override color
|
|
|
|
Returns:
|
|
edict containing:
|
|
color (torch.Tensor): (3, H, W) rendered color
|
|
depth (torch.Tensor): (H, W) rendered depth
|
|
alpha (torch.Tensor): (H, W) rendered alpha
|
|
distloss (Optional[torch.Tensor]): (H, W) rendered distance loss
|
|
percent_depth (Optional[torch.Tensor]): (H, W) rendered percent depth
|
|
aux (Optional[edict]): auxiliary tensors
|
|
"""
|
|
resolution = self.rendering_options["resolution"]
|
|
near = self.rendering_options["near"]
|
|
far = self.rendering_options["far"]
|
|
ssaa = self.rendering_options["ssaa"]
|
|
|
|
if self.unsupported:
|
|
image = np.zeros((512, 512, 3), dtype=np.uint8)
|
|
text_bbox = cv2.getTextSize("Unsupported", cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0]
|
|
origin = (512 - text_bbox[0]) // 2, (512 - text_bbox[1]) // 2
|
|
image = cv2.putText(image, "Unsupported", origin, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 3, cv2.LINE_AA)
|
|
return {
|
|
'color': torch.tensor(image, dtype=torch.float32).permute(2, 0, 1) / 255,
|
|
}
|
|
|
|
if self.rendering_options["bg_color"] == 'random':
|
|
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
|
if np.random.rand() < 0.5:
|
|
self.bg_color += 1
|
|
else:
|
|
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda")
|
|
|
|
if self.pipe["with_aux"]:
|
|
aux = {
|
|
'grad_color2': torch.zeros((octree.num_leaf_nodes, 3), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
|
|
'contributions': torch.zeros((octree.num_leaf_nodes, 1), dtype=torch.float32, requires_grad=True, device="cuda") + 0,
|
|
}
|
|
for k in aux.keys():
|
|
aux[k].requires_grad_()
|
|
aux[k].retain_grad()
|
|
else:
|
|
aux = None
|
|
|
|
view = extrinsics
|
|
perspective = intrinsics_to_projection(intrinsics, near, far)
|
|
camera = torch.inverse(view)[:3, 3]
|
|
focalx = intrinsics[0, 0]
|
|
focaly = intrinsics[1, 1]
|
|
fovx = 2 * torch.atan(0.5 / focalx)
|
|
fovy = 2 * torch.atan(0.5 / focaly)
|
|
|
|
camera_dict = edict({
|
|
"image_height": resolution * ssaa,
|
|
"image_width": resolution * ssaa,
|
|
"FoVx": fovx,
|
|
"FoVy": fovy,
|
|
"znear": near,
|
|
"zfar": far,
|
|
"world_view_transform": view.T.contiguous(),
|
|
"projection_matrix": perspective.T.contiguous(),
|
|
"full_proj_transform": (perspective @ view).T.contiguous(),
|
|
"camera_center": camera
|
|
})
|
|
|
|
|
|
render_ret = render(camera_dict, octree, self.pipe, self.bg_color, aux=aux, colors_overwrite=colors_overwrite, scaling_modifier=self.pipe.scale_modifier, used_rank=self.pipe.used_rank, halton_sampler=self.halton_sampler)
|
|
|
|
if ssaa > 1:
|
|
render_ret.rgb = F.interpolate(render_ret.rgb[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
|
render_ret.depth = F.interpolate(render_ret.depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
|
render_ret.alpha = F.interpolate(render_ret.alpha[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
|
if hasattr(render_ret, 'percent_depth'):
|
|
render_ret.percent_depth = F.interpolate(render_ret.percent_depth[None, None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
|
|
|
ret = edict({
|
|
'color': render_ret.rgb,
|
|
'depth': render_ret.depth,
|
|
'alpha': render_ret.alpha,
|
|
})
|
|
if self.pipe["with_distloss"] and 'distloss' in render_ret:
|
|
ret['distloss'] = render_ret.distloss
|
|
if self.pipe["with_aux"]:
|
|
ret['aux'] = aux
|
|
if hasattr(render_ret, 'percent_depth'):
|
|
ret['percent_depth'] = render_ret.percent_depth
|
|
return ret
|
|
|