|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import nvdiffrast.torch as dr
|
|
from easydict import EasyDict as edict
|
|
from ..representations.mesh import MeshExtractResult
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def intrinsics_to_projection(
|
|
intrinsics: torch.Tensor,
|
|
near: float,
|
|
far: float,
|
|
) -> torch.Tensor:
|
|
"""
|
|
OpenCV intrinsics to OpenGL perspective matrix
|
|
|
|
Args:
|
|
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
|
|
near (float): near plane to clip
|
|
far (float): far plane to clip
|
|
Returns:
|
|
(torch.Tensor): [4, 4] OpenGL perspective matrix
|
|
"""
|
|
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
|
|
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
|
|
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
|
|
ret[0, 0] = 2 * fx
|
|
ret[1, 1] = 2 * fy
|
|
ret[0, 2] = 2 * cx - 1
|
|
ret[1, 2] = - 2 * cy + 1
|
|
ret[2, 2] = far / (far - near)
|
|
ret[2, 3] = near * far / (near - far)
|
|
ret[3, 2] = 1.
|
|
return ret
|
|
|
|
|
|
class MeshRenderer:
|
|
"""
|
|
Renderer for the Mesh representation.
|
|
|
|
Args:
|
|
rendering_options (dict): Rendering options.
|
|
glctx (nvdiffrast.torch.RasterizeGLContext): RasterizeGLContext object for CUDA/OpenGL interop.
|
|
"""
|
|
def __init__(self, rendering_options={}, device='cuda'):
|
|
self.rendering_options = edict({
|
|
"resolution": None,
|
|
"near": None,
|
|
"far": None,
|
|
"ssaa": 1
|
|
})
|
|
self.rendering_options.update(rendering_options)
|
|
self.glctx = dr.RasterizeCudaContext(device=device)
|
|
self.device=device
|
|
|
|
def render(
|
|
self,
|
|
mesh : MeshExtractResult,
|
|
extrinsics: torch.Tensor,
|
|
intrinsics: torch.Tensor,
|
|
return_types = ["mask", "normal", "depth"]
|
|
) -> edict:
|
|
"""
|
|
Render the mesh.
|
|
|
|
Args:
|
|
mesh : meshmodel
|
|
extrinsics (torch.Tensor): (4, 4) camera extrinsics
|
|
intrinsics (torch.Tensor): (3, 3) camera intrinsics
|
|
return_types (list): list of return types, can be "mask", "depth", "normal_map", "normal", "color"
|
|
|
|
Returns:
|
|
edict based on return_types containing:
|
|
color (torch.Tensor): [3, H, W] rendered color image
|
|
depth (torch.Tensor): [H, W] rendered depth image
|
|
normal (torch.Tensor): [3, H, W] rendered normal image
|
|
normal_map (torch.Tensor): [3, H, W] rendered normal map image
|
|
mask (torch.Tensor): [H, W] rendered mask image
|
|
"""
|
|
resolution = self.rendering_options["resolution"]
|
|
near = self.rendering_options["near"]
|
|
far = self.rendering_options["far"]
|
|
ssaa = self.rendering_options["ssaa"]
|
|
|
|
if mesh.vertices.shape[0] == 0 or mesh.faces.shape[0] == 0:
|
|
default_img = torch.zeros((1, resolution, resolution, 3), dtype=torch.float32, device=self.device)
|
|
ret_dict = {k : default_img if k in ['normal', 'normal_map', 'color'] else default_img[..., :1] for k in return_types}
|
|
return ret_dict
|
|
|
|
perspective = intrinsics_to_projection(intrinsics, near, far)
|
|
|
|
RT = extrinsics.unsqueeze(0)
|
|
full_proj = (perspective @ extrinsics).unsqueeze(0)
|
|
|
|
vertices = mesh.vertices.unsqueeze(0)
|
|
|
|
vertices_homo = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1)
|
|
vertices_camera = torch.bmm(vertices_homo, RT.transpose(-1, -2))
|
|
vertices_clip = torch.bmm(vertices_homo, full_proj.transpose(-1, -2))
|
|
faces_int = mesh.faces.int()
|
|
rast, _ = dr.rasterize(
|
|
self.glctx, vertices_clip, faces_int, (resolution * ssaa, resolution * ssaa))
|
|
|
|
out_dict = edict()
|
|
for type in return_types:
|
|
img = None
|
|
if type == "mask" :
|
|
img = dr.antialias((rast[..., -1:] > 0).float(), rast, vertices_clip, faces_int)
|
|
elif type == "depth":
|
|
img = dr.interpolate(vertices_camera[..., 2:3].contiguous(), rast, faces_int)[0]
|
|
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
|
elif type == "normal" :
|
|
img = dr.interpolate(
|
|
mesh.face_normal.reshape(1, -1, 3), rast,
|
|
torch.arange(mesh.faces.shape[0] * 3, device=self.device, dtype=torch.int).reshape(-1, 3)
|
|
)[0]
|
|
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
|
|
|
img = (img + 1) / 2
|
|
elif type == "normal_map" :
|
|
img = dr.interpolate(mesh.vertex_attrs[:, 3:].contiguous(), rast, faces_int)[0]
|
|
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
|
elif type == "color" :
|
|
img = dr.interpolate(mesh.vertex_attrs[:, :3].contiguous(), rast, faces_int)[0]
|
|
img = dr.antialias(img, rast, vertices_clip, faces_int)
|
|
|
|
if ssaa > 1:
|
|
img = F.interpolate(img.permute(0, 3, 1, 2), (resolution, resolution), mode='bilinear', align_corners=False, antialias=True)
|
|
img = img.squeeze()
|
|
else:
|
|
img = img.permute(0, 3, 1, 2).squeeze()
|
|
out_dict[type] = img
|
|
|
|
return out_dict
|
|
|