|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import math
|
|
from easydict import EasyDict as edict
|
|
import numpy as np
|
|
from ..representations.gaussian import Gaussian
|
|
from .sh_utils import eval_sh
|
|
import torch.nn.functional as F
|
|
from easydict import EasyDict as edict
|
|
|
|
|
|
def intrinsics_to_projection(
|
|
intrinsics: torch.Tensor,
|
|
near: float,
|
|
far: float,
|
|
) -> torch.Tensor:
|
|
"""
|
|
OpenCV intrinsics to OpenGL perspective matrix
|
|
|
|
Args:
|
|
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix
|
|
near (float): near plane to clip
|
|
far (float): far plane to clip
|
|
Returns:
|
|
(torch.Tensor): [4, 4] OpenGL perspective matrix
|
|
"""
|
|
fx, fy = intrinsics[0, 0], intrinsics[1, 1]
|
|
cx, cy = intrinsics[0, 2], intrinsics[1, 2]
|
|
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device)
|
|
ret[0, 0] = 2 * fx
|
|
ret[1, 1] = 2 * fy
|
|
ret[0, 2] = 2 * cx - 1
|
|
ret[1, 2] = - 2 * cy + 1
|
|
ret[2, 2] = far / (far - near)
|
|
ret[2, 3] = near * far / (near - far)
|
|
ret[3, 2] = 1.
|
|
return ret
|
|
|
|
|
|
def render(viewpoint_camera, pc : Gaussian, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
|
|
"""
|
|
Render the scene.
|
|
|
|
Background tensor (bg_color) must be on GPU!
|
|
"""
|
|
|
|
if 'GaussianRasterizer' not in globals():
|
|
from diff_gaussian_rasterization import GaussianRasterizer, GaussianRasterizationSettings
|
|
|
|
|
|
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
|
|
try:
|
|
screenspace_points.retain_grad()
|
|
except:
|
|
pass
|
|
|
|
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
|
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
|
|
|
kernel_size = pipe.kernel_size
|
|
subpixel_offset = torch.zeros((int(viewpoint_camera.image_height), int(viewpoint_camera.image_width), 2), dtype=torch.float32, device="cuda")
|
|
|
|
raster_settings = GaussianRasterizationSettings(
|
|
image_height=int(viewpoint_camera.image_height),
|
|
image_width=int(viewpoint_camera.image_width),
|
|
tanfovx=tanfovx,
|
|
tanfovy=tanfovy,
|
|
kernel_size=kernel_size,
|
|
subpixel_offset=subpixel_offset,
|
|
bg=bg_color,
|
|
scale_modifier=scaling_modifier,
|
|
viewmatrix=viewpoint_camera.world_view_transform,
|
|
projmatrix=viewpoint_camera.full_proj_transform,
|
|
sh_degree=pc.active_sh_degree,
|
|
campos=viewpoint_camera.camera_center,
|
|
prefiltered=False,
|
|
debug=pipe.debug
|
|
)
|
|
|
|
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
|
|
|
means3D = pc.get_xyz
|
|
means2D = screenspace_points
|
|
opacity = pc.get_opacity
|
|
|
|
|
|
|
|
scales = None
|
|
rotations = None
|
|
cov3D_precomp = None
|
|
if pipe.compute_cov3D_python:
|
|
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
|
else:
|
|
scales = pc.get_scaling
|
|
rotations = pc.get_rotation
|
|
|
|
|
|
|
|
shs = None
|
|
colors_precomp = None
|
|
if override_color is None:
|
|
if pipe.convert_SHs_python:
|
|
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
|
|
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
|
|
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
|
|
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
|
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
|
else:
|
|
shs = pc.get_features
|
|
else:
|
|
colors_precomp = override_color
|
|
|
|
|
|
rendered_image, radii = rasterizer(
|
|
means3D = means3D,
|
|
means2D = means2D,
|
|
shs = shs,
|
|
colors_precomp = colors_precomp,
|
|
opacities = opacity,
|
|
scales = scales,
|
|
rotations = rotations,
|
|
cov3D_precomp = cov3D_precomp
|
|
)
|
|
|
|
|
|
|
|
return edict({"render": rendered_image,
|
|
"viewspace_points": screenspace_points,
|
|
"visibility_filter" : radii > 0,
|
|
"radii": radii})
|
|
|
|
|
|
class GaussianRenderer:
|
|
"""
|
|
Renderer for the Voxel representation.
|
|
|
|
Args:
|
|
rendering_options (dict): Rendering options.
|
|
"""
|
|
|
|
def __init__(self, rendering_options={}) -> None:
|
|
self.pipe = edict({
|
|
"kernel_size": 0.1,
|
|
"convert_SHs_python": False,
|
|
"compute_cov3D_python": False,
|
|
"scale_modifier": 1.0,
|
|
"debug": False
|
|
})
|
|
self.rendering_options = edict({
|
|
"resolution": None,
|
|
"near": None,
|
|
"far": None,
|
|
"ssaa": 1,
|
|
"bg_color": 'random',
|
|
})
|
|
self.rendering_options.update(rendering_options)
|
|
self.bg_color = None
|
|
|
|
def render(
|
|
self,
|
|
gausssian: Gaussian,
|
|
extrinsics: torch.Tensor,
|
|
intrinsics: torch.Tensor,
|
|
colors_overwrite: torch.Tensor = None
|
|
) -> edict:
|
|
"""
|
|
Render the gausssian.
|
|
|
|
Args:
|
|
gaussian : gaussianmodule
|
|
extrinsics (torch.Tensor): (4, 4) camera extrinsics
|
|
intrinsics (torch.Tensor): (3, 3) camera intrinsics
|
|
colors_overwrite (torch.Tensor): (N, 3) override color
|
|
|
|
Returns:
|
|
edict containing:
|
|
color (torch.Tensor): (3, H, W) rendered color image
|
|
"""
|
|
resolution = self.rendering_options["resolution"]
|
|
near = self.rendering_options["near"]
|
|
far = self.rendering_options["far"]
|
|
ssaa = self.rendering_options["ssaa"]
|
|
|
|
if self.rendering_options["bg_color"] == 'random':
|
|
self.bg_color = torch.zeros(3, dtype=torch.float32, device="cuda")
|
|
if np.random.rand() < 0.5:
|
|
self.bg_color += 1
|
|
else:
|
|
self.bg_color = torch.tensor(self.rendering_options["bg_color"], dtype=torch.float32, device="cuda")
|
|
|
|
view = extrinsics
|
|
perspective = intrinsics_to_projection(intrinsics, near, far)
|
|
camera = torch.inverse(view)[:3, 3]
|
|
focalx = intrinsics[0, 0]
|
|
focaly = intrinsics[1, 1]
|
|
fovx = 2 * torch.atan(0.5 / focalx)
|
|
fovy = 2 * torch.atan(0.5 / focaly)
|
|
|
|
camera_dict = edict({
|
|
"image_height": resolution * ssaa,
|
|
"image_width": resolution * ssaa,
|
|
"FoVx": fovx,
|
|
"FoVy": fovy,
|
|
"znear": near,
|
|
"zfar": far,
|
|
"world_view_transform": view.T.contiguous(),
|
|
"projection_matrix": perspective.T.contiguous(),
|
|
"full_proj_transform": (perspective @ view).T.contiguous(),
|
|
"camera_center": camera
|
|
})
|
|
|
|
|
|
render_ret = render(camera_dict, gausssian, self.pipe, self.bg_color, override_color=colors_overwrite, scaling_modifier=self.pipe.scale_modifier)
|
|
|
|
if ssaa > 1:
|
|
render_ret.render = F.interpolate(render_ret.render[None], size=(resolution, resolution), mode='bilinear', align_corners=False, antialias=True).squeeze()
|
|
|
|
ret = edict({
|
|
'color': render_ret['render']
|
|
})
|
|
return ret
|
|
|