|
|
|
|
|
import os
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
|
from safetensors.torch import save_file, load_file
|
|
|
|
DIR_CACHE = r"E:\llm_baack\cache"
|
|
DIR_OFFLOAD = r"E:\llm_baack\offload"
|
|
DIR_SAVE = r"E:\llm_baack\safetensors"
|
|
|
|
for _dir in [DIR_CACHE, DIR_OFFLOAD, DIR_SAVE]:
|
|
if not os.path.exists(_dir):
|
|
os.makedirs(_dir)
|
|
|
|
MODEL_SUBJ = "aaditya/Llama3-OpenBioLLM-8B"
|
|
MODEL_VECTOR = "aixsatoshi/Llama-3-youko-8b-instruct-chatvector"
|
|
MODEL_BASE = "NousResearch/Meta-Llama-3-8B"
|
|
|
|
|
|
def download_model(model_name):
|
|
s_name_offload = model_name.replace("/", "-")
|
|
dir_offload = os.path.join(DIR_OFFLOAD, s_name_offload)
|
|
if not os.path.exists(dir_offload):
|
|
os.makedirs(dir_offload)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
cache_dir=DIR_CACHE,
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="cpu",
|
|
offload_folder=dir_offload,
|
|
offload_state_dict=True,
|
|
trust_remote_code=True,
|
|
)
|
|
model.eval()
|
|
model.hf_device_map
|
|
|
|
model_state_dict = model.state_dict().copy()
|
|
|
|
for key in model_state_dict.keys():
|
|
model_value = model_state_dict[key].clone().to("cpu")
|
|
print(key, model_value.dtype, model_value.shape, model_value)
|
|
break
|
|
|
|
s_name = model_name.replace("/", "-")
|
|
dir_save_safe = os.path.join(DIR_SAVE, f"{s_name}.safetensors")
|
|
save_file(model_state_dict, dir_save_safe)
|
|
|
|
|
|
del model
|
|
del model_state_dict
|
|
|
|
return dir_save_safe, s_name
|
|
|
|
|
|
DIR_MODEL_SUBJ, s_name_subj = download_model(MODEL_SUBJ)
|
|
DIR_MODEL_VECTOR, s_name_vect = download_model(MODEL_VECTOR)
|
|
DIR_MODEL_BASE, s_name_base = download_model(MODEL_BASE)
|
|
|
|
|
|
d_state_subj = load_file(DIR_MODEL_SUBJ, device="cpu")
|
|
d_state_vector = load_file(DIR_MODEL_VECTOR, device="cpu")
|
|
new_state_dict = d_state_subj
|
|
|
|
with torch.no_grad():
|
|
for key in d_state_subj.keys():
|
|
print(key)
|
|
|
|
new_state_dict[key] = (
|
|
new_state_dict[key].to("cuda") + d_state_vector[key].to("cuda")
|
|
).to("cpu")
|
|
|
|
new_state_dict
|
|
del d_state_subj, d_state_vector
|
|
torch.cuda.empty_cache()
|
|
dir_save_subjpvect = os.path.join(DIR_SAVE, f"{s_name_subj}+{s_name_vect}.safetensors")
|
|
save_file(new_state_dict, dir_save_subjpvect)
|
|
|
|
|
|
d_state_subj_subjpvect = load_file(dir_save_subjpvect, device="cpu")
|
|
d_state_base = load_file(DIR_MODEL_BASE, device="cpu")
|
|
|
|
|
|
for key_subjpvect, key_base in zip(
|
|
d_state_subj_subjpvect.keys(), d_state_base.keys()
|
|
):
|
|
assert key_subjpvect == key_base
|
|
|
|
new_state_dict = d_state_subj_subjpvect
|
|
|
|
with torch.no_grad():
|
|
for key in new_state_dict.keys():
|
|
print(key)
|
|
|
|
new_state_dict[key] = (
|
|
new_state_dict[key].to("cuda") - d_state_base[key].to("cuda")
|
|
).to("cpu")
|
|
|
|
new_state_dict
|
|
save_file(new_state_dict, os.path.join(DIR_SAVE, f"{s_name_subj}+{s_name_vect}-{s_name_base}.safetensors"))
|
|
|
|
|