--- license: apache-2.0 language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification --- This Falcon 7B was fined-tuned on nuclear energy data from twitter/X for text classification task. The classification accuracy obtained is 96%. \ The number of labels is 3: {0: Negative, 1: Neutral, 2: Positive} \ Warning: You need enough GPU to use Falcon. This is an example to use it, it worked on 8 GB VRAM Nvidia RTX-4060 ```bash from transformers import AutoTokenizer from transformers import pipeline from transformers import AutoModelForSequenceClassification import torch checkpoint = 'kumo24/falcon-sentiment-nuclear' tokenizer=AutoTokenizer.from_pretrained(checkpoint) id2label = {0: "negative", 1: "neutral", 2: "positive"} label2id = {"negative": 0, "neutral": 1, "positive": 2} if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=3, id2label=id2label, label2id=label2id, device_map='auto') sentiment_task = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(sentiment_task("Michigan Wolverines are Champions, Go Blue!"))