|
|
|
|
|
import argparse |
|
import torch |
|
import sys |
|
|
|
sys.path.insert(0, ".") |
|
|
|
from diffusers.models import ( |
|
AutoencoderKL, |
|
) |
|
from omegaconf import OmegaConf |
|
from diffusers.schedulers import DDIMScheduler |
|
from diffusers.utils import logging |
|
from typing import Any |
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor |
|
|
|
from mv_unet import MultiViewUNetModel |
|
from pipeline import MVDreamPipeline |
|
import kiui |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, |
|
checkpoint, |
|
old_checkpoint, |
|
attention_paths_to_split=None, |
|
additional_replacements=None, |
|
config=None, |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits |
|
attention layers, and takes into account additional replacements that may arise. |
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance( |
|
paths, list |
|
), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
assert config is not None |
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape( |
|
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] |
|
) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if ( |
|
attention_paths_to_split is not None |
|
and new_path in attention_paths_to_split |
|
): |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
is_attn_weight = "proj_attn.weight" in new_path or ( |
|
"attentions" in new_path and "to_" in new_path |
|
) |
|
shape = old_checkpoint[path["old"]].shape |
|
if is_attn_weight and len(shape) == 3: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
elif is_attn_weight and len(shape) == 4: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
|
|
|
|
if 'imagedream' in original_config.model.target: |
|
vae_params = original_config.model.params.vae_config.params.ddconfig |
|
_ = original_config.model.params.vae_config.params.embed_dim |
|
vae_key = "vae_model." |
|
else: |
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
_ = original_config.model.params.first_stage_config.params.embed_dim |
|
vae_key = "first_stage_model." |
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = { |
|
"sample_size": image_size, |
|
"in_channels": vae_params.in_channels, |
|
"out_channels": vae_params.out_ch, |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"latent_channels": vae_params.z_channels, |
|
"layers_per_block": vae_params.num_res_blocks, |
|
} |
|
return config, vae_key |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config, vae_key): |
|
|
|
vae_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ |
|
"encoder.conv_out.weight" |
|
] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ |
|
"encoder.norm_out.weight" |
|
] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[ |
|
"encoder.norm_out.bias" |
|
] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ |
|
"decoder.conv_out.weight" |
|
] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ |
|
"decoder.norm_out.weight" |
|
] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[ |
|
"decoder.norm_out.bias" |
|
] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len( |
|
{ |
|
".".join(layer.split(".")[:3]) |
|
for layer in vae_state_dict |
|
if "encoder.down" in layer |
|
} |
|
) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] |
|
for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len( |
|
{ |
|
".".join(layer.split(".")[:3]) |
|
for layer in vae_state_dict |
|
if "decoder.up" in layer |
|
} |
|
) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] |
|
for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [ |
|
key |
|
for key in down_blocks[i] |
|
if f"down.{i}" in key and f"down.{i}.downsample" not in key |
|
] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[ |
|
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight" |
|
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") |
|
new_checkpoint[ |
|
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias" |
|
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key |
|
for key in up_blocks[block_id] |
|
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[ |
|
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight" |
|
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] |
|
new_checkpoint[ |
|
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias" |
|
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
vae_state_dict, |
|
additional_replacements=[meta_path], |
|
config=config, |
|
) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments( |
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments |
|
) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "to_q.weight") |
|
new_item = new_item.replace("q.bias", "to_q.bias") |
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight") |
|
new_item = new_item.replace("k.bias", "to_k.bias") |
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight") |
|
new_item = new_item.replace("v.bias", "to_v.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") |
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") |
|
|
|
new_item = shave_segments( |
|
new_item, n_shave_prefix_segments=n_shave_prefix_segments |
|
) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def create_unet_config(original_config) -> Any: |
|
return OmegaConf.to_container( |
|
original_config.model.params.unet_config.params, resolve=True |
|
) |
|
|
|
|
|
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device): |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
original_config = OmegaConf.load(original_config_file) |
|
|
|
prediction_type = "epsilon" |
|
image_size = 256 |
|
num_train_timesteps = ( |
|
getattr(original_config.model.params, "timesteps", None) or 1000 |
|
) |
|
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 |
|
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 |
|
scheduler = DDIMScheduler( |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
beta_start=beta_start, |
|
num_train_timesteps=num_train_timesteps, |
|
steps_offset=1, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
prediction_type=prediction_type, |
|
) |
|
scheduler.register_to_config(clip_sample=False) |
|
|
|
unet_config = create_unet_config(original_config) |
|
|
|
|
|
unet_config.pop('legacy', None) |
|
unet_config.pop('use_linear_in_transformer', None) |
|
unet_config.pop('use_spatial_transformer', None) |
|
|
|
unet_config.pop('ip_mode', None) |
|
unet_config.pop('with_ip', None) |
|
|
|
unet = MultiViewUNetModel(**unet_config) |
|
unet.register_to_config(**unet_config) |
|
|
|
unet.load_state_dict( |
|
{ |
|
key.replace("model.diffusion_model.", ""): value |
|
for key, value in checkpoint.items() |
|
if key.replace("model.diffusion_model.", "") in unet.state_dict() |
|
} |
|
) |
|
for param_name, param in unet.state_dict().items(): |
|
set_module_tensor_to_device(unet, param_name, device=device, value=param) |
|
|
|
|
|
vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size) |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key) |
|
|
|
if ( |
|
"model" in original_config |
|
and "params" in original_config.model |
|
and "scale_factor" in original_config.model.params |
|
): |
|
vae_scaling_factor = original_config.model.params.scale_factor |
|
else: |
|
vae_scaling_factor = 0.18215 |
|
|
|
vae_config["scaling_factor"] = vae_scaling_factor |
|
|
|
with init_empty_weights(): |
|
vae = AutoencoderKL(**vae_config) |
|
|
|
for param_name, param in converted_vae_checkpoint.items(): |
|
set_module_tensor_to_device(vae, param_name, device=device, value=param) |
|
|
|
|
|
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer") |
|
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) |
|
|
|
|
|
if unet.ip_dim > 0: |
|
feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") |
|
image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") |
|
else: |
|
feature_extractor = None |
|
image_encoder = None |
|
|
|
pipe = MVDreamPipeline( |
|
vae=vae, |
|
unet=unet, |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
|
|
return pipe |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to the checkpoint to convert.", |
|
) |
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
parser.add_argument( |
|
"--to_safetensors", |
|
action="store_true", |
|
help="Whether to store pipeline in safetensors format or not.", |
|
) |
|
parser.add_argument( |
|
"--half", action="store_true", help="Save weights in half precision." |
|
) |
|
parser.add_argument( |
|
"--test", |
|
action="store_true", |
|
help="Whether to test inference after convertion.", |
|
) |
|
parser.add_argument( |
|
"--dump_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="Path to the output model.", |
|
) |
|
parser.add_argument( |
|
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" |
|
) |
|
args = parser.parse_args() |
|
|
|
args.device = torch.device( |
|
args.device |
|
if args.device is not None |
|
else "cuda" |
|
if torch.cuda.is_available() |
|
else "cpu" |
|
) |
|
|
|
pipe = convert_from_original_mvdream_ckpt( |
|
checkpoint_path=args.checkpoint_path, |
|
original_config_file=args.original_config_file, |
|
device=args.device, |
|
) |
|
|
|
if args.half: |
|
pipe.to(torch_dtype=torch.float16) |
|
|
|
print(f"Saving pipeline to {args.dump_path}...") |
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
|
|
|
if args.test: |
|
try: |
|
|
|
if pipe.unet.ip_dim == 0: |
|
print(f"Testing each subcomponent of the pipeline...") |
|
images = pipe( |
|
prompt="Head of Hatsune Miku", |
|
negative_prompt="painting, bad quality, flat", |
|
output_type="pil", |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
device=args.device, |
|
) |
|
for i, image in enumerate(images): |
|
image.save(f"test_image_{i}.png") |
|
|
|
print(f"Testing entire pipeline...") |
|
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) |
|
images = loaded_pipe( |
|
prompt="Head of Hatsune Miku", |
|
negative_prompt="painting, bad quality, flat", |
|
output_type="pil", |
|
guidance_scale=7.5, |
|
num_inference_steps=50, |
|
device=args.device, |
|
) |
|
for i, image in enumerate(images): |
|
image.save(f"test_image_{i}.png") |
|
|
|
else: |
|
input_image = kiui.read_image('data/anya_rgba.png', mode='float') |
|
print(f"Testing each subcomponent of the pipeline...") |
|
images = pipe( |
|
image=input_image, |
|
prompt="", |
|
negative_prompt="", |
|
output_type="pil", |
|
guidance_scale=5.0, |
|
num_inference_steps=50, |
|
device=args.device, |
|
) |
|
for i, image in enumerate(images): |
|
image.save(f"test_image_{i}.png") |
|
|
|
print(f"Testing entire pipeline...") |
|
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) |
|
images = loaded_pipe( |
|
image=input_image, |
|
prompt="", |
|
negative_prompt="", |
|
output_type="pil", |
|
guidance_scale=5.0, |
|
num_inference_steps=50, |
|
device=args.device, |
|
) |
|
for i, image in enumerate(images): |
|
image.save(f"test_image_{i}.png") |
|
|
|
|
|
print("Inference test passed!") |
|
except Exception as e: |
|
print(f"Failed to test inference: {e}") |
|
|