--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 datasets: [] language: [] library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8408 - loss:CosineSimilarityLoss widget: - source_sentence: president sentences: - assistante de banque priv e banco santander rio - worldwide executive vice president corindus a siemens healthineers company - soporte t cnico superior - source_sentence: chief business strategy officer sentences: - sub jefe - analista senior recursos humanos sales staff and logistics - subgerente sostenibilidad y hseq - source_sentence: gerente de planificaciĆ³n sentences: - analista de soporte web - director - gestion calidad - source_sentence: global human resources leader sentences: - director manufacturing engineering - quality specialist - asesoramiento para comprar inmuebles en uruguay paraguay espa a y usa - source_sentence: commercial manager sentences: - jefe de turno planta envasado de vinos - gerente de operaciones - vice president of finance americas --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the šŸ¤— Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'commercial manager', 'gerente de operaciones', 'vice president of finance americas', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 8,408 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------|:------------------------------------------------------------------------------|:-----------------| | strategic planning manager | senior brand manager uap southern cone & personal care cdm chile | 0.0 | | director de planificacion | key account manager tiendas paris | 0.0 | | gerente general | analista de cobranza | 0.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 50 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 50 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:-------:|:-----:|:-------------:| | 0.9506 | 500 | 0.0434 | | 1.9011 | 1000 | 0.0135 | | 2.8517 | 1500 | 0.0072 | | 3.8023 | 2000 | 0.0056 | | 4.7529 | 2500 | 0.0044 | | 5.7034 | 3000 | 0.0038 | | 6.6540 | 3500 | 0.0034 | | 7.6046 | 4000 | 0.0032 | | 8.5551 | 4500 | 0.0029 | | 9.5057 | 5000 | 0.0028 | | 10.4563 | 5500 | 0.0026 | | 11.4068 | 6000 | 0.0025 | | 12.3574 | 6500 | 0.0026 | | 13.3080 | 7000 | 0.0023 | | 14.2586 | 7500 | 0.0023 | | 15.2091 | 8000 | 0.0023 | | 16.1597 | 8500 | 0.0022 | | 17.1103 | 9000 | 0.0021 | | 18.0608 | 9500 | 0.0019 | | 19.0114 | 10000 | 0.0021 | | 19.9620 | 10500 | 0.0019 | | 20.9125 | 11000 | 0.0019 | | 21.8631 | 11500 | 0.0016 | | 22.8137 | 12000 | 0.0018 | | 23.7643 | 12500 | 0.0018 | | 24.7148 | 13000 | 0.0018 | | 25.6654 | 13500 | 0.0016 | | 26.6160 | 14000 | 0.0017 | | 27.5665 | 14500 | 0.0016 | | 28.5171 | 15000 | 0.0016 | | 29.4677 | 15500 | 0.0016 | | 30.4183 | 16000 | 0.0016 | | 31.3688 | 16500 | 0.0019 | | 32.3194 | 17000 | 0.0018 | | 33.2700 | 17500 | 0.0017 | | 34.2205 | 18000 | 0.0016 | | 35.1711 | 18500 | 0.0016 | | 36.1217 | 19000 | 0.0016 | | 37.0722 | 19500 | 0.0015 | | 38.0228 | 20000 | 0.0012 | | 38.9734 | 20500 | 0.0015 | | 39.9240 | 21000 | 0.0015 | | 40.8745 | 21500 | 0.0013 | | 41.8251 | 22000 | 0.0014 | | 42.7757 | 22500 | 0.0014 | | 43.7262 | 23000 | 0.0014 | | 44.6768 | 23500 | 0.0013 | | 45.6274 | 24000 | 0.0012 | | 46.5779 | 24500 | 0.0014 | | 47.5285 | 25000 | 0.0012 | | 48.4791 | 25500 | 0.0013 | | 49.4297 | 26000 | 0.0013 | ### Framework Versions - Python: 3.8.5 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```