JingjingZhai
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,51 +1,54 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
4 |
-
|
5 |
-
## Model Overview
|
6 |
-
|
7 |
-
PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes:
|
8 |
-
|
9 |
-
- **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters
|
10 |
-
- **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters
|
11 |
-
- **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters
|
12 |
-
- **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
```
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
}
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
Jingjing Zhai ([email protected])
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
## Model Overview
|
6 |
+
|
7 |
+
PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes:
|
8 |
+
|
9 |
+
- **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters
|
10 |
+
- **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters
|
11 |
+
- **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters
|
12 |
+
- **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters
|
13 |
+
|
14 |
+
**We would highly recommend using the largest model ([PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)) for the zero-shot score estimation.**
|
15 |
+
|
16 |
+
|
17 |
+
## How to use
|
18 |
+
```python
|
19 |
+
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer
|
20 |
+
import torch
|
21 |
+
model_path = 'kuleshov-group/PlantCaduceus_l20'
|
22 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
23 |
+
model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device)
|
24 |
+
model.eval()
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
26 |
+
|
27 |
+
sequence = "ATGCGTACGATCGTAG"
|
28 |
+
encoding = tokenizer.encode_plus(
|
29 |
+
sequence,
|
30 |
+
return_tensors="pt",
|
31 |
+
return_attention_mask=False,
|
32 |
+
return_token_type_ids=False
|
33 |
+
)
|
34 |
+
input_ids = encoding["input_ids"].to(device)
|
35 |
+
with torch.inference_mode():
|
36 |
+
outputs = model(input_ids=input_ids, output_hidden_states=True)
|
37 |
+
```
|
38 |
+
|
39 |
+
## Citation
|
40 |
+
```bibtex
|
41 |
+
@article {Zhai2024.06.04.596709,
|
42 |
+
author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yair and Berthel, Ana and Liu, Zong-Yan and Miller, Zachary R and Scheben, Armin and Stitzer, Michelle C and Romay, Cinta and Buckler, Edward S. and Kuleshov, Volodymyr},
|
43 |
+
title = {Cross-species plant genomes modeling at single nucleotide resolution using a pre-trained DNA language model},
|
44 |
+
elocation-id = {2024.06.04.596709},
|
45 |
+
year = {2024},
|
46 |
+
doi = {10.1101/2024.06.04.596709},
|
47 |
+
URL = {https://www.biorxiv.org/content/early/2024/06/05/2024.06.04.596709},
|
48 |
+
eprint = {https://www.biorxiv.org/content/early/2024/06/05/2024.06.04.596709.full.pdf},
|
49 |
+
journal = {bioRxiv}
|
50 |
+
}
|
51 |
+
```
|
52 |
+
|
53 |
+
## Contact
|
54 |
Jingjing Zhai ([email protected])
|