File size: 1,226 Bytes
6a3adfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
datasets:
- ktennyson6/augmented-vsr-v2
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
# Text-to-image finetuning - ktennyson6/sd-vsr-5k
This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **ktennyson6/augmented-vsr-v2** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['prompts']:
![val_imgs_grid](./val_imgs_grid.png)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("ktennyson6/sd-vsr-5k", torch_dtype=torch.float16)
prompt = "prompts"
image = pipeline(prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 4
* Learning rate: 1e-05
* Batch size: 1
* Gradient accumulation steps: 4
* Image resolution: 256
* Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/kayla-m-tennyson/text2image-fine-tune/runs/avqlqpfd).
|