File size: 5,121 Bytes
b63318a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f986b468-c428-4ca3-9101-1cbabe6ad73f",
"metadata": {},
"outputs": [],
"source": [
"from vllm import LLM, SamplingParams\n",
"import pandas as pd\n",
"import numpy as np\n",
"import torch.nn.functional as F\n",
"import torch\n",
"from transformers import AutoTokenizer\n",
"from transformers import AutoModelForCausalLM\n",
"import re\n",
"import os\n",
"#os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"1\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e0537c8-85cc-4bae-97de-6dd6f70ea5a3",
"metadata": {},
"outputs": [],
"source": [
"llama = LLM(model='hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4', tensor_parallel_size = 2, download_dir = \"../meta_ai/\", gpu_memory_utilization=0.80, max_model_len=10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6119a0b4-5a63-4f91-a637-484b5e9dc29c",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "71a24b19-5e1c-4c24-b13b-ac04c1e94bd2",
"metadata": {},
"outputs": [],
"source": [
"def generate_synthetic_clinical_notes(num_reports, llama_model):\n",
"\n",
" tokenizer = llama_model.get_tokenizer()\n",
" prompts = []\n",
" cancer_types = np.random.choice(['breast', 'non-small cell lung', 'small cell lung', 'colorectal', 'pancreatic', 'urothelial', 'prostate', 'gastric', 'esophageal', 'thymoma', 'thymic carcinoma', 'adrenal', 'ovarian', 'endometrial', 'melanoma', 'renal cell', 'sarcoma', 'head and neck', 'Hodgkin lymphoma', 'Non-Hodgkin lymphoma', 'myeloma', 'acute myeloid leukemia', 'chronic myeloid leukemia', 'acute lymphoblastic leukemia', 'chronic lymphocytic leukemia/lymphoma', 'primary brain tumor'], size=num_reports) \n",
"\n",
" for i in range(num_reports):\n",
" messages = [\n",
" {'role':'system', 'content': \"\"\"Your job is to generate synthetic oncologist clinical progress notes for hypothetical patients with cancer.\n",
" You know all there is to know about cancer and its treatments, so be detailed. \n",
" \"\"\"}, \n",
" \n",
" {'role':'user', 'content': \"\"\"Imagine a patient with cancer. \n",
" The cancer type is\"\"\" + cancer_types[i] + \".\" + \"\"\"\n",
" The patient might have any stage of disease. Use everything you know about cancer, including biomarkers, epidemiology, and heterogeneity in disease presentations.\n",
" The note might correspond to any point along the disease trajectory, from initial diagnosis to curative intent treatment to palliative intent treatment.\n",
" The note should include a chief complaint, oncologic history including prior treatments, past medical history/comorbidities, current subjective clinical status and physical exam including vital signs and ECOG performance status, laboratory values, radiology excerpts, and an assessment and plan.\n",
" The note should should be approximately two pages long. It will not be used for clinical care, so do not include disclaimers.\"\"\"}\n",
" ]\n",
" \n",
" prompts.append(tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False))\n",
" \n",
"\n",
" \n",
" responses = llama_model.generate(\n",
" prompts, \n",
" SamplingParams(\n",
" temperature=1.0,\n",
" top_p=0.9,\n",
" max_tokens=4000,\n",
" stop_token_ids=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(\"<|eot_id|>\")], # KEYPOINT HERE\n",
" ))\n",
"\n",
" response_texts = [x.outputs[0].text for x in responses]\n",
"\n",
"\n",
" return pd.DataFrame({'cancer_type':cancer_types, 'synthetic_clinical_note':response_texts})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63642559-3583-4771-88f1-5d4e8b6e033f",
"metadata": {},
"outputs": [],
"source": [
"results = generate_synthetic_clinical_notes(10000, llama)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6eeb2f9c-4ca8-424b-b30e-dcee57323fe2",
"metadata": {},
"outputs": [],
"source": [
"results.to_csv('synthetic_clinical_notes.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0470b150-dda1-4900-adb6-a90e5cf74e39",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|