krishna-exe commited on
Commit
f86e3ca
1 Parent(s): d3d98c1

Model save

Browse files
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.8685015290519877
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.3496
37
- - Accuracy: 0.8685
38
 
39
  ## Model description
40
 
@@ -54,23 +54,25 @@ More information needed
54
 
55
  The following hyperparameters were used during training:
56
  - learning_rate: 5e-05
57
- - train_batch_size: 32
58
- - eval_batch_size: 32
59
  - seed: 42
60
  - gradient_accumulation_steps: 4
61
- - total_train_batch_size: 128
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
- - num_epochs: 3
66
 
67
  ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
- | 0.5239 | 1.0 | 23 | 0.5283 | 0.7890 |
72
- | 0.3716 | 2.0 | 46 | 0.3934 | 0.8410 |
73
- | 0.2964 | 3.0 | 69 | 0.3496 | 0.8685 |
 
 
74
 
75
 
76
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.9477351916376306
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.1158
37
+ - Accuracy: 0.9477
38
 
39
  ## Model description
40
 
 
54
 
55
  The following hyperparameters were used during training:
56
  - learning_rate: 5e-05
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 16
59
  - seed: 42
60
  - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 64
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 5
66
 
67
  ### Training results
68
 
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
71
+ | 0.5761 | 0.9877 | 40 | 0.4113 | 0.8432 |
72
+ | 0.3871 | 2.0 | 81 | 0.2570 | 0.9024 |
73
+ | 0.2586 | 2.9877 | 121 | 0.1910 | 0.9408 |
74
+ | 0.2164 | 4.0 | 162 | 0.1312 | 0.9443 |
75
+ | 0.1757 | 4.9383 | 200 | 0.1158 | 0.9477 |
76
 
77
 
78
  ### Framework versions
runs/Oct10_11-22-23_e11ecca18f17/events.out.tfevents.1728559355.e11ecca18f17.609.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7196fcb7f936eca9d6ded526055568691873e147a52532f7d6aedfdb26c3f9c2
3
- size 10882
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efd7bbf358a6054c9b3199439d29d4c02995e4169f98d1d55a30a4930f25730f
3
+ size 11559